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Summary Theoretical consideration are performed to improve further understanding of compressibility effects asawholein the new field
of hydrodynamics at super high speedsin the range of the speed of sound of water which is order of ¢c~1500my/s.

For very high speed in water the body motion is realized in a vapor filled cavity, created by a small blunt nose part of
the body, the so called cavitator. Under these conditions most part of the body is separated from the liquid fluid, which
implies the possibility to avoid considerable viscous losses and achieve a very low total drag, comparable to that of high
speed motion in air. Up to now classical supercavitation modelling is based mainly on the incompressibility assumption
and can be found in number of well known books, e.g. of G Birchoff and E. Zarantonello [1], M. Gurevich [2].
Axisymmetric flow can be illustrated by a simple heuristic model which follows from the Slender Body Theory (SBT).
Moving through a fluid at rest, the cavitator pushes fluid aside and its momentum is converted into energy of a
practicaly radial flow in every lateral section of the cavity. Further, a practically independent expansion and
compression of lateral cavity sections occur in interaction with the surrounding pressure p,, and pressure in the cavity

pe ~ 0. Minimum drag coefficients are achieved by establishing the maximal slenderness of the cavity. One of the most

effective technique for prediction of minimum drag is the application of simple heuristic models, together with integral
conservation laws and combined with the perturbation theory. In the past, this approach gave the possibility yet for 40-
50 years to estimate shape and main scaling of cavities, e.g. by H. Reichardt, A. May , G. Logvinovich , P. Garabedian
and others. Considerable advances have been achieved by M. Tulin and his 2-D linear theory for supercavitation, which
stimulated the development of a linearized axisymmetric theory using the SBT and the Matched Asymptotic Expansion
Method (MAEM) [3-4]. Important results here were obtained by C.C. Grigorian, Yu. L. Yakimov, A.G. Petrov too. The
base of the linearized theory is the integro-differential equations (IDE) for slender axisymmetric cavities and it’s
solution with help of asymptotic expansions with the slenderness parameter . The most important configuration is the
singular case for small cavitators including a disc. The solution is separated into the 3 zones: The inner near cavitator
solution (nonlinear for disc), the intermediate solution on the base of known Gurevich - Levinson asymptotic
development at infinity and the solution for the outer field as ellipsoidal cavity perturbation problem. With the help of
matching and by using the M. Van Dyke additive rule suitable solutions are found. The (IDE) for M =0 has the same
form as that for M <1 and for M>1 it has the same structure, which gives the possibility to apply this approach for
the theory for M <1 and M >1too. Despite of essential achievements the situation in the field of super high speeds in
water a as whole is far from ideal. Note, here one of the first experiments for M >1 [5] at speeds of motion till 1000m/s
has been performed by Yu. Yakimov, speeds till1200-1300 m/s - in [6], not high M >1 have been investigated in [7].
Small scale experiments have been performed by: Yu. Bivin - Yu Gluchov - Yu. Permiakov, C. Voidneck, M. Schaffar
too. All experiments are for the natural pressure of 1bar only. Nonlinear numerical calculations in case of cone and
disc for M <1, M>1 are obtained in [8], a numerical-analytical approach for M <1 is developed in [9]. Results of
linearized approaches for M <1, M>1: linear 2-D theory in [10], axisymmetric linearized theory in [11,12], 2-D plane
theory in [14]. Numerical calculations have been presented by A. Terentiev - A. Chechnev, generalization of the model
for top high speed - by R. Saurel, J.P Cocchi, P.B. Butler, and an attempt to predict finite cavities in the regime of not
large M>1 - by A. Vasin. The existing theoretical models have been developed for total pressures till
25000-30000 bar, by applying Tait’s equation of state for water in adiabatic form, together with the compressible
Bernoulli equation and the know dependence for the speed of sound:
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B= 3045kg/ ecm?, n=715, P, P P» P Pressure, density in the flow and at infinity, respectively, u, v components of
perturbation speed, U,, speed at infinity. (IDEs) for the slender axisymmetric cavities r = R(x) on the base of SBT are:
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X =X, -separation section, o, = 2(p, — pc)/pmufo - cavitation number, m = /| Mi -1|,r=r(x) - aslender cavitator form.

Interstitial (ODE) are extracted from (IDE) and its intermediate asymptotics Eqs.3, and from asymptotic solutions for
0 =0 inthe particular in case of adiscfor M <1 Eq. 4a, and for aslender cone for M >1 Eq. 4b are obtained:
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. Here R,, =1 isthe disc radius, € = tany, y - cone semi-angle, cy, - cavitator drag
R P coefficient for =0, Kg- asymptotic constant for M>1. The linearized
, /// second order theory [11-12] predicts not large compressibility influence at
//?/ M <1, experiments [6] confirm Egs. 3, 4 until M ~0.6-0.8. In case of
0/«; . cavities behind slender cavitators for M >1the compressibility influence is not
5 A = large, but if the cavity become essentially large as compared to the cavitator this
' ,,*’* influence can become very important. For M <1 the solutions of the Egs. 3, 4
JREE express the energy conservation law, for M>1 - a considerable wave loss
ne E h I for M>1 derabl I
8 4 . = appears depended on the cavitator form. For M >1 the asymptotic behavior of

Eg. 3 is confirmed by experiments [7], even for very not high M >1, solutions
of the type of Eq. 4 for a cone are confirmed by numerical calculations [8]. As
result the shape of the front part of cavitiesat M>1 can be considerable more
numerical calculation L. Guzevsky ,  narrow as compared with M <1. The results of the prediction of the front part
00D, FHET experiment G. Logvinivich  of the cavities are demonstrated by Fig. 1. The compressibility influence on the
— - — cone y=10°solution for M= 0  aspect ratio of finite cavities is not large and is estimated by the known

eeoo. +:x+ dc M=1, M=2" " yorondence A =/(In15m2/0)/0 . At the same time the coefficient k ~1 in the

nonlinear numerical calculation [7]
______ cone y=10°, M'> Lsolution Eq.4 Known formula for the maximal radius Ry =Rp/cq/ko a M <1 - in case of

+ + + coney=10°, M= 2 [7] M>1 can be essentially more than 1 and accordingly the size of the finite
cavities can be considerable more small as compared with theM <1case.
Thanks to the very high adiabatic coefficient n=7,15 a very vide transonic Mach number regime in water with mixed

flow of M <land M>1 isdiscovered, here transonic equation is applied:
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what gives the possibility to estimate the aspect ratio of transonic cavities and the drag coefficient of slender cavitators

[12]. At present the most important topic is the investigation of the transonic supercavitating flows and making
additional special experiments for verifications of the theory.

Fig. 1 Front part of cavities, 0 =0
— —— disc M= 0 solution Eq.4,
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