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Summary  Theoretical consideration are performed to improve further understanding of compressibility effects as a whole in the new field 
of hydrodynamics at super high speeds in the range of the  speed of sound of water which is order of  c~1500m/s. 
  

For very high speed in water the body motion is realized in a vapor filled cavity, created by a small blunt nose part of 
the body, the so called cavitator. Under these conditions most part of the body is separated from the liquid fluid, which 
implies the possibility to avoid considerable viscous losses and achieve a very low total drag, comparable to that of high 
speed motion in air. Up to now classical supercavitation modelling is based mainly on the incompressibility assumption 
and can be found in number of well known books, e.g. of G Birchoff and E. Zarantonello [1], M. Gurevich [2]. 
Axisymmetric flow can be illustrated by a simple heuristic model which follows from the  Slender Body Theory (SBT).  
Moving through a fluid at rest, the cavitator pushes fluid aside and its momentum is converted into energy of a 
practically radial flow in every lateral section of the cavity. Further, a practically independent expansion and 
compression of lateral cavity sections occur in interaction with the surrounding pressure p∞  and pressure in the cavity 

cp ~ 0 . Minimum drag coefficients are achieved by establishing the maximal slenderness of the cavity. One of the most 

effective technique for prediction of minimum drag is the application of simple heuristic models, together with integral 
conservation laws and combined with the perturbation theory. In the past, this approach gave the possibility yet for 40-
50 years to estimate shape and main scaling of cavities, e.g. by H. Reichardt,  A. May , G. Logvinovich , P. Garabedian 
and others. Considerable advances have been achieved by M. Tulin and his 2-D linear theory for supercavitation, which 
stimulated the development of a linearized axisymmetric theory using the SBT and the Matched Asymptotic Expansion 
Method (MAEM) [3-4]. Important results here were obtained by C.C. Grigorian, Yu. L. Yakimov, A.G. Petrov too. The 
base of the linearized theory is the integro-differential equations (IDE) for slender axisymmetric cavities and it’s 
solution with help of asymptotic expansions with the slenderness parameter δ . The most important configuration is the 
singular case for small cavitators including a disc. The solution is separated into the 3 zones: The inner near cavitator 
solution (nonlinear for disc), the intermediate solution on the base of known Gurevich - Levinson asymptotic 
development at infinity and the solution for the outer field as ellipsoidal cavity perturbation problem. With the help of 
matching and by using the M. Van Dyke additive rule suitable solutions are found. The (IDE) for 0=M   has the same 
form as that for 1  <M and for  >1M  it has the same structure, which gives the possibility to apply this approach for 
the theory for 1<M   and  >1M too. Despite of essential achievements the situation in the field of super high speeds in 
water a as whole is far from ideal. Note, here one of the first experiments for >1M  [5] at speeds of motion till 1000m /s  
has been performed by Yu. Yakimov, speeds till1200 1300 m /s−  - in [6], not high >1M  have been investigated in [7]. 
Small scale experiments have been performed by: Yu.  Bivin - Yu Gluchov - Yu. Permiakov, C. Voidneck, M. Schaffar 
too. All experiments are for the natural pressure of 1 bar  only.  Nonlinear numerical calculations in case of cone and 
disc for 1<M , >1M  are obtained in [8], a numerical-analytical approach for 1<M  is developed in  [9].  Results of 
linearized approaches for 1<M , >1M :  linear 2-D theory in [10], axisymmetric linearized theory in [11,12], 2-D plane 
theory in [14]. Numerical calculations have been presented by A. Terentiev - A. Chechnev, generalization of the model 
for top high speed - by R. Saurel, J.P Cocchi, P.B. Butler, and an attempt to predict finite cavities in the regime of not 
large >1M  -  by  A. Vasin.  The existing  theoretical  models  have been  developed  for   total pressures till 
25000 30000 bar− , by  applying  Tait’s equation of state for water in adiabatic form, together with the compressible 
Bernoulli equation and the know dependence for the speed of sound:  
 

a)  
n n

P P∞

∞

+ +=
ρ ρ

B B ,          b)   2 n(P )dP
c

d

+
= =

ρ ρ
B

,��������� ����
2 2 2n P (U u) v n P U

n 1 2 n 1 2
∞ ∞ ∞

∞

+ + + ++ = +
− ρ − ρ

B B
, 

 
( 1) 

 

23045 cm ,  n 7,15= =B kg , p,  p ;  ,  ∞ ∞ρ ρ  pressure, density in the flow and at infinity, respectively, u,  v components of 

perturbation speed, U∞  speed at infinity.  (IDEs) for the slender axisymmetric cavities r R(x)= on the base of  SBT are: 
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ox x= -separation section,  2
c2(p p ) / U∞ ∞ ∞ ∞σ = − ρ - cavitation number, m | 1 |∞= −2M , r r (x)= 1 - a slender cavitator form. 

Interstitial  (ODE) are extracted from (IDE) and its intermediate asymptotics Eqs.3,  and from asymptotic solutions  for 
0σ =  in the particular in case of  a disc for 1<M  Eq. 4a , and for a slender cone for >1M  Eq. 4b are obtained:  
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Here nR 1=  is the disc radius, tan ,  ε = γ γ - cone semi-angle, doc - cavitator drag 

coefficient for 0σ = , sK - asymptotic constant for >1M . The linearized 

second order theory [11-12] predicts not large compressibility influence at 
1<M , experiments [6] confirm Eqs. 3, 4 until ~ 0.6 - 0.8M . In case of 

cavities behind slender cavitators for >1M the compressibility influence is not 
large, but if the cavity become essentially large as compared to the cavitator this 
influence can become very important. For 1<M  the solutions of the Eqs. 3, 4 
express the energy conservation law, for >1M  - a considerable wave loss 
appears depended on the cavitator form. For >1M  the asymptotic  behavior of 
Eq. 3 is confirmed by experiments [7], even for very not high >1M , solutions 
of the type of Eq. 4 for a cone are confirmed  by numerical calculations [8]. As 
result the shape of the front part of cavities at >1M  can be considerable more 
narrow as compared with 1<M . The results of the prediction of the front part 
of  the cavities are demonstrated by Fig. 1. The compressibility influence on the 
aspect ratio of finite cavities is not large and is estimated by the known 

dependence 2(ln1.5m / ) /λ = σ σ . At the same time the coefficient ~ 1k  in the 

known formula for the maximal radius k n dR R c / k= σ at 1<M  - in case of 

>1M  can be essentially more than 1 and accordingly the size of the finite 
cavities can be considerable more small as compared with the 1<M case. 

Thanks to the very high adiabatic coefficient n 7,15=  a very vide transonic Mach number regime in water with mixed 
flow of 1<M and >1M  is discovered, here transonic equation is applied:  
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what gives the possibility to estimate the aspect ratio of transonic cavities and the drag coefficient of slender cavitators 
[12]. At present the most important topic is the investigation of the transonic supercavitating flows and making 
additional special experiments for verifications of the theory. 
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Fig. 1  Front part of cavities, 0σ =  

�����     disc M = 0  solution  Eq.4,  

——  numerical calculation L. Guzevsky , 

 experiment G. Logvinivich 

¦�����¦   cone o10γ = solution  for M = 0  

    disc  1=M , 2=M  
nonlinear numerical calculation  [7] 
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