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Summary  Objective is trying to maintain the value of analytic modelling for deeper insight, education and development of 
new design concepts. Analytical flow models are used to confirm wellknown and find new solutions: Logarithmic structure 
of surface pressure distribution occurs with occurence of different shock waves interacting with contour geometry.

MAPPING THE FLOW PROBLEMS TO THE HODOGRAPH

A recent IUTAM symposium [1] on transonic flow has shown that analytic treatment of complex flows still draws 
interest as an efficient tool to shed light into complex flow details where numerical results give no clear answers.
Complexity of flow problems may stem from special boundary conditions as well as from dynamics within the 
flow field. In transonic flow, the latter source of complexity, for instance, occurs due to shock waves within the 
flow field. This holds already for steady, inviscid 2D flow. Aerodynamic applications, of course, require the simu-
lation of steady and unsteady viscous and 3D flows, but with recent developments in flow control technology, as 
seen in [1], prescribing target pressure distributions to control viscous interaction becomes important. We are 
therefore interested to preserve some of the findings from inviscdid, 2D flows models, guiding us to suitably 
parameterize design parameters.
Here we use the idealized 2D near sonic flow equations (1) for velocity components U, V desribing perturbed 
sonic velocity parallel flow (U = 0, V = 0). These equations model  potential flow for vorticity ω = 0 and also rep-
resent a small perturbation approximation of the Euler equations. For ω = 0 the hodograph transformation to 

velocity variables ν,θ (Prandtl-Meyer angle, ν ~ ±|U|3/2, and flow angle θ) results in the Beltrami mapping equa-
tions (2). We note that this system is linear and weakly singular at ν = 0, it is the basis for near sonic flow phe-
nomena modelling. Investigation of flow phenomena, which do not include the sonic condition ν = 0, but focus 
around perturbing a special value of ν, lead to simple Cauchy-Riemann (C-R) or wave equations (3) in the 
hodograph plane. This is equivalent to suitably linearizing (1) around a given value of U ≠ 0 and this way also 
obtaining C-R or wave equations in the (X,Y) physical plane.
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A wellknown example: Normal shock on the curved wall
A series of publications has dealt with the problem of a normal shock on a curved wall. A study of the relevant 
milestones which confirmed the analytical structure of a logarithmic solution for the pressure distribution along 
the wall, cp ~ a+bXlog(X)+..., should start with the work of v.Koppenfels [2] about incompressible flow past 
walls with curvature jumps. Emmons [3] numerically solved the compressible flow Euler equations and mentions 
qualitative relations of his results to flows as investigated by v.Koppenfels. Gadd [4] clearly points out this earlier 
work to arrive at a logarithmic model, Oswatitsch and Zierep [5] confirm the logarithmic solution by studying the 
above equation (1), linearized around the value of U behind a normal shock and without vorticity. Final doubts 
about validity of such local potential solution, based on the occurrence of shock-curvature-induced vorticity, are 
removed by Fung [6] concluding that the vorticity terms are of a higher order than those governing the logarith-
mic character of the solution.
Finally, our own work in transonic airfoil design fits to this model, if a shock is being designed using the Fictitious 
Gas technique: Sobieczky and Niederdrenk [7] use subsonic initial boundary conditions with a curvature jump to 
solve an elliptic (“fictitious”) boundary value problem, before in a second step a supersonic flow pattern termi-
nated by a shock wave and the smoothly curved contour wetted by supersonic flow is constructed by the method 
of characteristics and the shock relations. Such academic examples led us to develop novel wing design strategies, 
to be applied subsequently to 3D, viscous and even unsteady aerodynamics. Examples are shown in [1].



Another logarithmic flow singularity: shock attaching to a wedge airfoil leading edge
Here another problem is presented involving the shock relations near a singular location on the boundary: Shock 
attachment to a wedge leading edge (Fig. 1a) requires a transition from a detached normal shock to an oblique 
shock. This problem is treated easier in the hodograph plane (Fig. 1b) using the Beltrami mapping system (2),  the 
shock polar and investigating the vicinity of the shock polar maximum deflection point M (Fig 1c). This allows 
for linearization around the subsonic νM using C-R system (3). With systems (2) and (3) representing analog flow 
in the hodograph plane ( ν,θ), we have to describe a potential flow model in the sharp angle left of M, with a 

straight solid boundary above and a curved transpirating boundary with flow emanating under 45o from it. For 
solution of this boundary value problem a series of simple conformal mappings is used and illustrated in Fig. 2. 
From these the pressure coefficient along the wedge contour near the tip results to cp ~ a+b/log(X)+....., obviously 
a hitherto not yet described detail of shock attachment to a wedge.

CONCLUSION

Analytical flow models are still seen as precise tools to: (1) understand complicated flow patterns generated by 
special boundary conditions, (2) subsequently explain and educate about flow phenomena and (3), finally use 
their suitably parameterized mathematics for aerospace design and optimization.
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Fig. 1: Shock attachment to a wedge in low supersonic Mach number flow (a), analog to growing shock polar 
with flow emanating under given directions in hodograph plane (b) until touching fixed contour DE, (c).
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Fig. 2: Conformal mappings to find solution ζ = Fct(Z), resulting in wedge surface pressure cp(ν) = fct(X)Y=0 
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