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Summary Nonlinear interaction of heat-conducting gas bubble with viscoelastic liquid in a sound field of small but final amplitude is 
described. The liquid phase is treated as non-Newtonian fluid following Oldroyd type rheological equation. Solution of the problem is 
received within the volume approach in quadratic approximation with respect to the incident wave amplitude. Resulting relation for the 
scattered wave intensity is studied numerically with the emphasis on the dissipation features. The study is motivated by the problem of 
acoustic control of microbubbles trapping in flows of smart fluids with memory.  
 

INTRODUCTION 
 
Microbubbles can change drastically dynamic properties of the liquid and therefore their appearance in smart fluids 
flows must be controlled carefully. One of perspective tools for microbubbles diagnostics is the acoustic method based 
on high scattering ability of small inclusions of free gas in a liquid. Among different modifications of acoustic method, 
the nonlinear ones attract special attention because allow to detect bubbles already at low bubble concentrations and 
sufficiently small amplitudes of the fundamental wave [1]. It is explained by the fact that nonlinearity of gas within 
compressible bubble is responsible for the major input in nonlinear properties of the gas-liquid mixture [2]. Small gas 
bubble in a sound field of final amplitude can be treated as nonlinear oscillator generating the scattered signal at 
multiple frequencies along with the basic one. The theory of second harmonics generation by small bubbles has been 
developed in [2] and it was shown that the amplitude of this harmonic is sufficiently large to be registered [3]. The goal 
of the present study is to generalize this theory for the case of viscoelastic liquid. The volume approach [2] is used here, 
but, as distinct to the previous studies [2-4], the liquid nonlinearity is taken into account, the losses are not supposed to 
be additive and are calculated consecutively within the general perturbation scheme.  
 

FORMULATION OF THE MODEL 
 
Hydrodynamic problem 
It is supposed that rheological properties of the liquid can be described by Oldroyd type rheological equation: 
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Here ωτ ,  and e  are deviator of the stress tensor, vorticity and rate deformation tensors, respectively; λ  - relaxation 
time; η  - Newtonian viscosity of the liquid; β - parameter, characterizing input of the Maxwell element in the 
effective viscosity of the liquid ( )10 ≤≤ β ; α  - parameter of the liquid nonlinearity; DtD / - Jaumann derivative. 
The generalized Raleigh equation for small spherical bubble, oscillating in a sound field, is formulated in suggestions 
that the bubble can be considered as a monopole scatterer (the sound wavelength is much larger than the equilibrium 
bubble radius 0R ), the liquid is incompressible and its rheology, the same as in the case of a purely viscous liquid, is 
manifested only in the close vicinity of the interface. The resulting integro-differential equation for the bubble radius 
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Here σρ ,  are density and surface tension coefficient of the liquid; 1
0000 2, −+=−=∆ Rppppp gggg σ , where 

gpp ,0  are equilibrium pressure in the liquid and current pressure in the gas phase; ap - pressure disturbance in the 

incident wave with frequency ω . The far-field component of the pressure in the scattered wave has the form (rheology 
of the liquid influences the scattered signal through the bubble dynamics equation only):  
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where 0c  is the sound speed in the liquid, r  is the radial coordinate and rt - the retarded time [3].  

Gas dynamic problem and boundary conditions 
The pressure within pulsating gas bubble in a wide range of conditions doesn't depend from the radial coordinate and 
therefore the internal problem can be written in the following form: 
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Here ggg vT ,, ρ are gas temperature, density and the radial velocity in gas; vgpgg cck ,,  - heat conductivity and 

specific heat capacities of gas. The boundary conditions at )(tRr = mean: )(,0 tRvTTg
&== . At the bubble centre 

0,0/ ==∂∂ gg vrT .  

 
NONLINEAR SCATTERING OF THE INCIDENT WAVE 

 
Following the volume displacement approach [2, 3], the disturbance of the bubble volume ∆V is introduced in (2)-(4) 

instead of the radius R  ( ))(3/4( 3
0

3 RRV −= π∆ ). The result is written in dimensionless form, keeping all the terms 

up to 2V∆ . Solution of the problem is searched in the form: 
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where ggggs TvpupV ~,~,~,~,~,~,~ δδρδδδδδ  are dimensionless disturbances of the bubble volume, pressure in the 

scattered wave, radial component of the stress tensor deviator in liquid at the interface, gas pressure and density, 
velocity and temperature in the gas phase, respectively. Vector components with the subscript 1 have the order of 

aP~ and are proportional to tie
~~ω while that with the subscript 2 have the order of 2~

aP  and are proportional to tie
~~2 ω . 

The scaling is done with the use of equilibrium parameters 000 ,,, TpR ρ . A tilde is used to distinguish dimensional 
variables from their nondimensionalized equivalents. The equations governing the pressure in the linear scattered wave 
and the amplitude of the second harmonics are obtained and solved consecutively. The resulting relations are analyzed 
and the basic features of nonlinear wave scattering by small gas bubble in viscoelastic liquid are established. 
   

CONCLUSIONS 

The thermal and rheological losses in viscoelastic liquid at linear wave scattering can be treated as additive factors the 
same as in a pure viscous liquid [5]. This result isn’t hold for the signal scattered at the second harmonics frequency, 
that is explained by the losses coupling. The influence of rheological nonlinearity on the amplitude of the second 
harmonics grows with the amplitude of the incident wave. Nevertheless, in a wide frequency region the gas nonlinearity 
is the dominant factor; the features of liquid nonlinearity are manifested mainly in the vicinity of the linear resonance 
( 0~ωω ). Scattering cross section of the bubble lowers with growth of the liquid viscosity η  both for basic and 
second harmonics as a result of increase in rheological losses. Relative amplitude of the second harmonics (with respect 
to the basic one) for viscoelastic liquid is always greater than for similar pure viscous liquid because of frequency-
dependent behavior of dynamic viscosity. The results of simulations indicate that even for sufficiently viscous smart 
viscoelastic liquids the amplitude of nonlinear scattered wave at the resonance is large enough to be detected by the 
same acoustic equipment that is used for bubbles diagnostics in water. It opens possibilities for acoustic control of 
bubbles trapping in flows of viscoelastic smart liquids with high viscosity in the same manner as for low viscous 
Newtonian fluids. 
 
References 
 
[1] Naugolnykh K., Ostrovsky L.: Nonlinear Wave Processes in Acoustics. Cambridge University Press, 1998.  
[2] Zabolotskaya, E.A., Soluyan, S.I.: Emission of Harmonic and Combination Frequency Waves by Air Bubbles. Sov.        
      Phys. Acoust. 18: 396-398, 1972. 
[3] Sutin, A.M., Yoon, S.W., Kim, E.J., Didenkulov, I.N.: Nonlinear Acoustic Method for Bubble Density Measurements    

in Water. J. Acoust. Soc. Am., 103 (5): 2377-2384, 1998. 
[4] Levitsky S. On Nonlinear Scattering of Sound by Small Bubble in Polymeric Liquid. Proc. IUTAM-16: Nonlinear          
      Acoustics at the Beginning of the 21st Century. Eds. Rudenko O., Sapozhnikov O. Moscow, MSU, 2002. 2: 927-930. 
[5] Prosperetti A. The Thermal Behaviour of Oscillating Gas bubbles. J. Fluid Mech. 222: 587-615, 1991. 


