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Summary Nonlinear interaction of heat-conducting gas bubble with viscoelastic liquid in a sound field of small but final amplitude is
described. The liquid phase is treated as non-Newtonian fluid following Oldroyd type rheological equation. Solution of the problem is
received within the volume approach in quadratic approximation with respect to the incident wave amplitude. Resulting relation for the
scattered wave intensity is studied numerically with the emphasis on the dissipation features. The study is motivated by the problem of
acoustic control of microbubbles trapping in flows of smart fluids with memory.

INTRODUCTION

Microbubbles can change drastically dynamic properties of the liquid and therefore their appearance in smart fluids
flows must be controlled carefully. One of perspective tools for microbubbles diagnostics is the acoustic method based
on high scattering ability of small inclusions of free gas in a liquid. Among different modifications of acoustic method,
the nonlinear ones attract special attention because allow to detect bubbles already at low bubble concentrations and
sufficiently small amplitudes of the fundamental wave [1]. It is explained by the fact that nonlinearity of gas within
compressible bubble is responsible for the major input in nonlinear properties of the gas-liquid mixture [2]. Small gas
bubble in a sound field of final amplitude can be treated as nonlinear oscillator generating the scattered signal at
multiple frequencies along with the basic one. The theory of second harmonics generation by small bubbles has been
developed in [2] and it was shown that the amplitude of this harmonic is sufficiently large to be registered [3]. The goal
of the present study is to generalize this theory for the case of viscoelastic liquid. The volume approach [2] is used here,
but, as distinct to the previous studies [2-4], the liquid nonlinearity is taken into account, the losses are not supposed to
be additive and are calculated consecutively within the general perturbation scheme.

FORMULATION OF THE MODEL

Hydrodynamic problem
It is supposed that rheological properties of the liquid can be described by Oldroyd type rheological equation:
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Here 7, @ and e are deviator of the stress tensor, vorticity and rate deformation tensors, respectively; A - relaxation
time; 77 - Newtonian viscosity of the liquid; /3 - parameter, characterizing input of the Maxwell element in the

effective viscosity of the liquid (0 < # <1); a - parameter of the liquid nonlinearity; D / Dt - Jaumann derivative.

The generalized Raleigh equation for small spherical bubble, oscillating in a sound field, is formulated in suggestions
that the bubble can be considered as a monopole scatterer (the sound wavelength is much larger than the equilibrium

bubble radius Ry)), the liquid is incompressible and its rheology, the same as in the case of a purely viscous liquid, is

manifested only in the close vicinity of the interface. The resulting integro-differential equation for the bubble radius
R = R(t) can be reduced to two coupled differential equationS'
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Here p, o are density and surface tension coefficient of the liquid; Al?g =Py~ DPgos Pgo= Do +20Rgl, where
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Do> P, are equilibrium pressure in the liquid and current pressure in the gas phase; p, - pressure disturbance in the

incident wave with frequency @ . The far-field component of the pressure in the scattered wave has the form (rheology
of the liquid influences the scattered signal through the bubble dynamics equation only):
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where ¢, is the sound speed in the liquid, 7 is the radial coordinate and £, - the retarded time [3].

Gas dynamic problem and boundary conditions

The pressure within pulsating gas bubble in a wide range of conditions doesn't depend from the radial coordinate and
therefore the internal problem can be written in the following form:
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Here Tg, Pg» Vg are gas temperature, density and the radial velocity in gas; k ¢> Cpg> Cog - heat conductivity and
specific heat capacities of gas. The boundary conditions at 7 = R(¢) mean: T ¢ = 1y, v= R(t ) . At the bubble centre
oT,/or=0,v,=0.

NONLINEAR SCATTERING OF THE INCIDENT WAVE

Following the volume displacement approach [2, 3], the disturbance of the bubble volume AV is introduced in (2)-(4)
instead of the radius R (AV = (4x/ 3)(R3 - Rg ) ). The result is written in dimensionless form, keeping all the terms

up to AV? . Solution of the problem is searched in the form:
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where 5? s 5N Dy, o, ﬁﬁg R 5\7 5]: g are dimensionless disturbances of the bubble volume, pressure in the

scattered wave, radial component of the stress tensor deviator in liquid at the interface, gas pressure and density,
velocity and temperature in the > gas phase, respectively. Vector components with the subscript 1 have the order of

P and are proportional to ¢'®! while that with the subscript 2 have the order of Pa and are proportional to e2za)t

The scaling is done with the use of equilibrium parameters Ry, pg, o, I - A tilde is used to distinguish dimensional

variables from their nondimensionalized equivalents. The equations governing the pressure in the linear scattered wave
and the amplitude of the second harmonics are obtained and solved consecutively. The resulting relations are analyzed
and the basic features of nonlinear wave scattering by small gas bubble in viscoelastic liquid are established.

CONCLUSIONS

The thermal and rheological losses in viscoelastic liquid at linear wave scattering can be treated as additive factors the
same as in a pure viscous liquid [5]. This result isn’t hold for the signal scattered at the second harmonics frequency,
that is explained by the losses coupling. The influence of rheological nonlinearity on the amplitude of the second
harmonics grows with the amplitude of the incident wave. Nevertheless, in a wide frequency region the gas nonlinearity
is the dominant factor; the features of liquid nonlinearity are manifested mainly in the vicinity of the linear resonance

(@ ~ @,). Scattering cross section of the bubble lowers with growth of the liquid viscosity 77 both for basic and

second harmonics as a result of increase in rheological losses. Relative amplitude of the second harmonics (with respect
to the basic one) for viscoelastic liquid is always greater than for similar pure viscous liquid because of frequency-
dependent behavior of dynamic viscosity. The results of simulations indicate that even for sufficiently viscous smart
viscoelastic liquids the amplitude of nonlinear scattered wave at the resonance is large enough to be detected by the
same acoustic equipment that is used for bubbles diagnostics in water. It opens possibilities for acoustic control of
bubbles trapping in flows of viscoelastic smart liquids with high viscosity in the same manner as for low viscous
Newtonian fluids.
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