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INFLUENCE OF THE SUBGRID MODELS ON COMBUSTION MODELING
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Summary Turbulent flow with combustion is modelled numerically using LES (Large Eddy Simulation) method together with the
flamelet approach. The governing equations applied in this work are based on the low Mach number approximation. High order
compact differences/pseudospectral discretization method is applied to guarantee accurate results. The computations are performed for
Sandia D flame configuration.

Introduction
Turbulent flows with combustion are among the most difficult problems occurring in nature and in industrial applications.
A common appearance and importance of such flows require their correct prediction allowing for their optimization and
control. The unsteady character of the turbulence implies the use of LES method which in turn allows to obtain time
dependent solutions. This work concerns the analysis of the influence of subgrid models (subgrid viscosity) used within
a framework of the LES method of turbulence/combustion modelling. To be able to perform such research it is necessary
to exclude the effect of the numerical dissipation and its possible influence on the subgrid viscosity. The high order
compact differences/pseudospectral numerical discretization method applied in computations allows for such analysis
and also guarantees very accurate results. In this short summary all quantities (if not mentioned separately) appearing in
the equations have standard meaning e.g. ρ - density, ui - velocity, etc.

Combustion modeling
In the most general case modelling of the combustion processes is very expensive computationally since together with
the solution of the flow field, based on the Navier-Stokes equations, it requires solution of additional transport equations
for particular N species (e.g. CO, CO2, H2O, H2, etc.) produced in chemical reactions. Furthermore, the chemical
kinetics which accounts for various reactions for which it is difficult to assess their importance a priori, should also be
considered as a part of the solution. From the point of view of capability of available computers, approach of this type is
still impossible since the numerical code would require implementation of the equations for tens species and tens (or even
several hundred) chemical reactions. An approach used in this work is based on a flamelet concept [1] which states that
flame can be seen as an ensemble of laminar flamelets. The equation for the conserved scalar is used, which is refereed to
as the mixture fraction and denoted wherein after as z, in the form of the simple convection-diffusion equation:
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The mixture fraction is a normalized quantity (z ∈ [0, 1]) and represents a local fuel to oxidizer ratio (z = 0 - pure oxidizer;
z = 1 - pure fuel). The assumption that one conserved scalar is sufficient to describe thermochemical state of the flow de-
couples the modeling of reactive phenomena from that of flow modelling. Assuming that particular species concentration,
Yk, and temperature, T , are the functions of the mixture fraction (Yk(~x, t) = Yk(z(~x, t), t), T (~x, t) = T (z(~x, t), t)) the
equations for these quantities may be transformed into the mixture fraction space resulting in the equations of the form:
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whereD is the diffusion coefficient assumed the same for each species and ω̇ is the reaction rate depending on the chemical
kinetics. The above equation together with the equation for the temperature constitute the unsteady flamelet approach in
which the dependence of the temperature and species on time is retained. However, knowing that characteristic time of
the chemical processes is much smaller than time of the turbulent phenomena one can assume the structure of the flamelet
to be steady even though the mixture fraction itself depends on time. With this assumption, at every instantaneous time of
the solution, the values of Yk(~x) and T (~x) may be computed based on the mixture fraction. The functional dependences
Yk(~x) = Yk(z(~x)) and T (~x) = T (z(~x)) are provided from the solution of the laminar flamelet calculations of the steady
flamelet equations. Knowing the species concentration corresponding to a given value of the mixture fraction the density
may be computed based on the equation of state and then also expressed as the functional dependence of z. In the context
of LES method of turbulence modeling, where every quantities are represented as the superposition of their filtered and
subgrid parts, the mixture fraction equation has the form:
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where (̄·) and (̃·) represents the LES-filtered and Favre-filtered variables, Prt stands for the turbulent Prandtl number and
µt is the turbulent viscosity obtained from the subgrid model.



Flow field modeling
For the strongly variable density/temperature low speed (low Mach) flows it is necessary to take into account their spatially
and temporally unsteady character. In this research we applied the so-called low Mach number approximation of the
governing equations, where the flow variables are expressed as power series of ε = γM 2 (γ - ratio of the specific heats,
M - Mach number) in the form: f = f (0) + εf (1) + ε2f (2) + O(ε3). The LES-filtered continuity and the Navier-Stokes
equations at the zero order quantities (except for the pressure) are given as:
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∂ũ(0)

i

∂xj

+
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We note that in the framework of low Mach number approximation the equation for the mixture fraction should also be

seen as an equation for zero order quantities (ρ(0), z̃(0)). In the present work the turbulent viscosity is modelled using
Smagorinsky subgrid model together with its dynamic counterpart and filtered structure function model [2].

Solution procedure and sample results
The solution procedure for the set of equations (4), (5) and (3) is based on the projection method which allows to determine
the pressure field p(1) from the Poisson equations. The time advancement is performed by low storage III th order Runge-
Kutta method, all space derivatives are discretized using V I th order compact differences method or Fourier pseudospectral
method in the directions for which periodic boundary conditions are assumed. The preliminary results showing the
contours of the mixture fraction for Sandia D flame are presented in Fig.1, they are in reasonably good agreement with
experimental data. The periodic boundary conditions are applied on the boundaries parallel to the jet axis, at the outflow
we applied convective type boundary conditions while at the inlet the velocity and mixture fraction profiles correspond to
experimental data. These computations were performed with the filtered structure function model for the subgrid scale.

Figure 1. Mixture fraction contours in Sandia D flame.

CONCLUSIONS

This summary presents the main idea and the solution strategy for modeling turbulent flow with combustion. The obtained
results are very promising, the research concerning comparison of the accuracy of various subgrid models is currently in
progress.
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