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Summary It was shown in [1] that waves in a two-layer system with feeeface boundary conditions (or in a three-layer system)
can be modelled by a system of two coupled long wave equatiims study of the resonance between a solitary wave of orfeeof t
two equations and a copropagating periodic wave of the @tfyeation is carried out numerically. The resulting wave geaeralized
solitary wave. It is shown that in the case of a thick solitasgve (solution of a modified Korteweg—de Vries equation vaitbubic
nonlinearity), the generalized solitary waves do not behike common sechgeneralized solitary waves. Simplified models are
introduced, which allow a better understanding of thestiostary and time-dependent long wave solutions.

Introduction

This work deals with a particular case of long waves, whiébedior example in the physical context of multi-layer flows
of inviscid fluids. For instance, two superposed fluids wibhhoa free surface and an interface, or three superposed fluid
with two interfaces and a rigid top, are typical configurai®f interest here. We are dealing with systems having two
wave modes which admit generalized solitary waves. Thesaamlinear long wave solutions consisting of a localized
central pulse and periodic non decaying oscillations aniityfi These solutions do not only occur in this context. Ictfa
most existing results have been obtained in the framewotke€lassical water-wave problem with surface tension [2].
It has been proved that, in a specific region of the parametsres pure solitary waves cannot exist because periodic
oscillations, eventually exponentially small, get cauginthe solitary pulse.

When dealing with interfacial waves, the amplitude of thigaky pulse can be bounded by the configuration. In the case
of classical solitary waves, it is known that when the waveespapproaches a critical value, the solution is best mexdlell
by an extended Korteweg-de Vries (KdV) equation, i.e. a Kdation with a cubic nonlinear term. The solitary wave
reaches its limiting amplitude by infinite broadening. le thmit, one has to consider fronts, which are related toon;
gate flows [3]. Some questions arise when dealing with géredasolitary waves: Do oscillations appear on top of the
flat part of the wave? Do oscillations only appear on the Sid&hat are their properties? The objective of this work is
to learn more about these new solutions. Rather than prakigigexistence in a particular context, the idea is to @eriv
models to describe and compare them with common generaldadry waves.

Dias and Il'ichev [1] derived a system based on two KdV edureiwith cubic nonlinear and coupling terms. They briefly
considered analytically the case with small oscillationgap of a front. A system of two coupled KdV equations was
also derived by Grimshaw [4] for three layers with two ingeds, but without emphasis on generalized solitary waves.
His point of view consists in treating generically the phermmon of resonance between two wave modes, in the weakly
nonlinear long wave limit. Generalized solitary waves, athare solitary waves with resonant periodic oscillations
copropagating with the long wave, appear naturally. Gramss system has been studied by Grimshaw and looss [5],
who show the existence of such nonlocal solutions. We censidsimilar system to study generalized thick solitary
waves:
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whereu andv are the wave amplitudes. All the coefficients are real.

First we look for stationary solutions. Their properties discussed and compared with well-known generalizedasglit
waves. The study of the stationary system provides an appation for the initial data used when integrating the time-
dependent system. The non-stationary solutions are teskim terms of the characteristics underlined in the statip
study. In both cases, it is useful to solve analytically agdanmodel which clarifies the results.

Stationary solutions

When the coupling is weak andof the same order as the coupling, a good approximation cfitsiem is a modified KdV
equation inu, whose solution forces a linear equationvinThis forced equation is certainly the simpler model désieg
generalized solitary waves. It is completely solvabletsan be used to get explicit information on the solutions vee a
interested in. Since we are looking (numerically) for pditosolutions, we choose periodic boundary conditions.nThe
the domain length is the wavelength of the long periodic waxgch is essentially a solitary wave. In [6], it was shown
that the forcing by a flat solitary wave is quite differentrfrahe forcing by a sechsolitary wave. It is due to the fact
that a flat forcing has simple poles outside the imaginary exthe complex plane. As a consequence, there are isolated
parameter values for which the flat solitary wave tends to agiinfinity. If the forcing was the solution of a classical
KdV equation, the amplitude of the ripples would never vanis
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Figl. A stationary solution, with rippleﬂ """""""" Fig3. A non-stationary solution after a
on the sides and in the middle part long time

Next we compute stationary solutions of the full system nueadly (Figure 1). Using spectral methods, we get solwion
similar to those of the simplified model. By varying the salitvidth, we were able to confirm the previous results on the
possibility to kill the ripples.

Time-dependent solutions

This part deals with the evolution of an initial perturbatidn particular, we want to know if we can get a generalized
thick solitary wave. If so, what are its characteristics? eXpected, the long wave radiates only on one side as it was
discovered for usual generalized solitary waves. The swlaifter a long time can be compared with stationary sohstio

of the previous section. On one hand, numerical computaibonthe whole system are carried out. On the other hand,
we use again the forced linear equatien & 3, = 0) to obtain information at very large times.

The numerical scheme combines a spectral method in spalc@Wtinge Kutta time stepping scheme. In order to allow
for larger time steps, the integrating factor techniquesisdu It consists in multiplying each equation by an expdaént
factor so that the dispersive term no longer appears in tesyto be solved. Then the classical fourth order RungeKutt
method is applied (honlinear terms are computed with theF@grier transform and its inverse). The initial perturbat

is the thick solitary wave solution of the extended KortewdegVries equation. It gives a good approximation to the core
of the expected generalized solitary wave. Indeed, FigwteoRvs such a solution. Note that an initial wave which does
not have the proper width splits into several solitary wavesexpected, the ripples radiate only on one side (behiad th
long wave). We notice the presence of small waves on top aféh#al pulse. For this moderate time, the wave radiation
is not of constant amplitude.

The presence of small oscillations requires small timesstapd so solutions for very long time are difficult to obtain.
This is why the simpler model is used again to compare witiostary solutions. This approximation available for weak
coupling is solvable in time and leads to an integral fortiataof the solution. From this expression, we can plot the
solution for any desired time through a numerical evaluatibthe integral by fast Fourier transforms. This way, we
can check if the stationary solution can be reached. Figste®/s a zoom of a solution which underlines the resonance
phenomenon. We observe that the envelope modulation isuatied and slightly oscillates around a constant value. On
the other side of the central pulse, there are also some w#niel propagate under the form of wave packets. Most likely
they correspond to the faster branch of the relation digprersirve. Their precise origin is still under investigatidf we
specify a parameter set such that the stationary solutiswdugishing oscillations on the sides as shown in the previou
section, we note that the long wave is located just at a troetneen two wave packets: therefore the resonance does not
occur, or rather occurs with zero amplitude ripples.

Conclusion
This study is a first step in the study of generalized intesoétary waves and fronts. The time evolution of generalize
fronts appears to be quite different from the behaviour ofgalized solitary waves.
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