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Summary It was shown in [1] that waves in a two-layer system with free-surface boundary conditions (or in a three-layer system)
can be modelled by a system of two coupled long wave equations. The study of the resonance between a solitary wave of one of the
two equations and a copropagating periodic wave of the otherequation is carried out numerically. The resulting wave is ageneralized
solitary wave. It is shown that in the case of a thick solitarywave (solution of a modified Korteweg–de Vries equation witha cubic
nonlinearity), the generalized solitary waves do not behave like common sech

�
generalized solitary waves. Simplified models are

introduced, which allow a better understanding of these stationary and time-dependent long wave solutions.

Introduction
This work deals with a particular case of long waves, which arise for example in the physical context of multi-layer flows
of inviscid fluids. For instance, two superposed fluids with both a free surface and an interface, or three superposed fluids
with two interfaces and a rigid top, are typical configurations of interest here. We are dealing with systems having two
wave modes which admit generalized solitary waves. These are nonlinear long wave solutions consisting of a localized
central pulse and periodic non decaying oscillations at infinity. These solutions do not only occur in this context. In fact
most existing results have been obtained in the framework ofthe classical water-wave problem with surface tension [2].
It has been proved that, in a specific region of the parameter space, pure solitary waves cannot exist because periodic
oscillations, eventually exponentially small, get caughton the solitary pulse.

When dealing with interfacial waves, the amplitude of the solitary pulse can be bounded by the configuration. In the case
of classical solitary waves, it is known that when the wave speed approaches a critical value, the solution is best modelled
by an extended Korteweg-de Vries (KdV) equation, i.e. a KdV equation with a cubic nonlinear term. The solitary wave
reaches its limiting amplitude by infinite broadening. In the limit, one has to consider fronts, which are related to conju-
gate flows [3]. Some questions arise when dealing with generalized solitary waves: Do oscillations appear on top of the
flat part of the wave? Do oscillations only appear on the sides? What are their properties? The objective of this work is
to learn more about these new solutions. Rather than provingtheir existence in a particular context, the idea is to derive
models to describe and compare them with common generalizedsolitary waves.

Dias and Il’ichev [1] derived a system based on two KdV equations with cubic nonlinear and coupling terms. They briefly
considered analytically the case with small oscillations on top of a front. A system of two coupled KdV equations was
also derived by Grimshaw [4] for three layers with two interfaces, but without emphasis on generalized solitary waves.
His point of view consists in treating generically the phenomenon of resonance between two wave modes, in the weakly
nonlinear long wave limit. Generalized solitary waves, which are solitary waves with resonant periodic oscillations
copropagating with the long wave, appear naturally. Grimshaw’s system has been studied by Grimshaw and Iooss [5],
who show the existence of such nonlocal solutions. We consider a similar system to study generalized thick solitary
waves:

� � � � � � � � � � � � � 	 � � 
 � � � � � � � � � � � � 
 � � �

 � � � 
 � � � 
 
 
 � � 	 
 
 
 
 � � � 
 
 � � � � � 
 � � � � �

where� and 
 are the wave amplitudes. All the coefficients are real.

First we look for stationary solutions. Their properties are discussed and compared with well-known generalized solitary
waves. The study of the stationary system provides an approximation for the initial data used when integrating the time-
dependent system. The non-stationary solutions are described in terms of the characteristics underlined in the stationary
study. In both cases, it is useful to solve analytically a simpler model which clarifies the results.

Stationary solutions
When the coupling is weak and
 of the same order as the coupling, a good approximation of thesystem is a modified KdV
equation in� , whose solution forces a linear equation in
 . This forced equation is certainly the simpler model describing
generalized solitary waves. It is completely solvable, so it can be used to get explicit information on the solutions we are
interested in. Since we are looking (numerically) for periodic solutions, we choose periodic boundary conditions. Then
the domain length is the wavelength of the long periodic wave, which is essentially a solitary wave. In [6], it was shown
that the forcing by a flat solitary wave is quite different from the forcing by a sech
 solitary wave. It is due to the fact
that a flat forcing has simple poles outside the imaginary axis in the complex plane. As a consequence, there are isolated
parameter values for which the flat solitary wave tends to zero at infinity. If the forcing was the solution of a classical
KdV equation, the amplitude of the ripples would never vanish.
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Fig1.A stationary solution, with ripples
on the sides and in the middle part
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Fig2.A non-stationary solution
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Fig3.A non-stationary solution after a
long time

Next we compute stationary solutions of the full system numerically (Figure 1). Using spectral methods, we get solutions
similar to those of the simplified model. By varying the soliton width, we were able to confirm the previous results on the
possibility to kill the ripples.

Time-dependent solutions
This part deals with the evolution of an initial perturbation. In particular, we want to know if we can get a generalized
thick solitary wave. If so, what are its characteristics? Asexpected, the long wave radiates only on one side as it was
discovered for usual generalized solitary waves. The solution after a long time can be compared with stationary solutions
of the previous section. On one hand, numerical computations on the whole system are carried out. On the other hand,
we use again the forced linear equation (� 
 � 	 
 � � ) to obtain information at very large times.

The numerical scheme combines a spectral method in space with a Runge Kutta time stepping scheme. In order to allow
for larger time steps, the integrating factor technique is used. It consists in multiplying each equation by an exponential
factor so that the dispersive term no longer appears in the system to be solved. Then the classical fourth order Runge Kutta
method is applied (nonlinear terms are computed with the fast Fourier transform and its inverse). The initial perturbation
is the thick solitary wave solution of the extended Korteweg-de Vries equation. It gives a good approximation to the core
of the expected generalized solitary wave. Indeed, Figure 2shows such a solution. Note that an initial wave which does
not have the proper width splits into several solitary waves. As expected, the ripples radiate only on one side (behind the
long wave). We notice the presence of small waves on top of thecentral pulse. For this moderate time, the wave radiation
is not of constant amplitude.

The presence of small oscillations requires small time steps, and so solutions for very long time are difficult to obtain.
This is why the simpler model is used again to compare with stationary solutions. This approximation available for weak
coupling is solvable in time and leads to an integral formulation of the solution. From this expression, we can plot the
solution for any desired time through a numerical evaluation of the integral by fast Fourier transforms. This way, we
can check if the stationary solution can be reached. Figure 3shows a zoom of a solution which underlines the resonance
phenomenon. We observe that the envelope modulation is attenuated and slightly oscillates around a constant value. On
the other side of the central pulse, there are also some waveswhich propagate under the form of wave packets. Most likely
they correspond to the faster branch of the relation dispersion curve. Their precise origin is still under investigation. If we
specify a parameter set such that the stationary solution has vanishing oscillations on the sides as shown in the previous
section, we note that the long wave is located just at a troughbetween two wave packets: therefore the resonance does not
occur, or rather occurs with zero amplitude ripples.

Conclusion
This study is a first step in the study of generalized internalsolitary waves and fronts. The time evolution of generalized
fronts appears to be quite different from the behaviour of generalized solitary waves.
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