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SHORT WIND WAVES AND SURFACE WIND DRIFT
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Summary The problem of short wind waves propagate on surface wind drift is considered here. The convergence of piecewise
linear approximation for solving Rayleigh instability equation is proved. The method is numerically efficient and highly accurate.
Applying this method, linear stability diagrams of various boundary flows are examined. It is also used to validate the applicability
of other approximate approaches to the problem of propagation of short waves on wind drift shear. (Acknowledgment: This work is
supported by the National Science Foundation. OCE0118028).

Under the assumption of small monochromatic surface waves on a steady horizontally uniform surface shear of an
inviscid fluid, the governing equation becomes the well-known Rayleigh equation. The exact analytical solutions are
found for a very limited number of current profiles. For arbitrary current profiles, approximate solutions are used'".
The conditions for these approximations may be violated in the case of short wind waves on wind drift shear. As an
alternative approach, the piecewise linear approximation (PLA) is explored.

THE CONVERGENCE OF THE PIECEWISE LINEAR APPROXIMATION

A continuous shear profile is approximated by constant vorticity layers. It is convenient to assume an uniform layer
thickness, Az. At the layer interfaces, the piecewise linear velocities are chosen to match the corresponding
continuous shear velocities. Our PLA solution to the Rayleigh equation is an expansion series in powers of the layer
thickness:
W(z)=W?"(2)+A2) W () + Az’ WP () +...

The boundary conditions at free surface and the bottom are the same for all the orders'”, so does the velocity continuity
across the layer interfaces. At the zeroth order, the vorticity jump condition holds at layer interfaces. However, at the
higher orders, there is an additional term from lower order residue as underlined below:

(c—AUNW"™ (2, + %) Wz, f%) +W " D= 4[U'(z +%) -U'(z, f%)]W(”” (z;), m>0, Az—0

where 7 is a non-dimensional scaling factor, ¢ is the surface wave speed, z, is the position of a layer interface, and
U, is the velocity value atz,. ' denotes for vertical differentiation. The difference between finite difference of U'of

PL velocity and that of /'(z) of the continuous profile is at an order of (Az)’:

V' + - -5

e+ - -5
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If W '(z) is continuous at z=z, as Az— 0, and the second derivative, W "(z), at the layer interfaces also
becomes well-defined at the limit, then, we can show:
(c—’yM)(W(O) "y W(O))+ ,Yu HW(O) =0 z= z,

Although, the higher order terms become insignificant as
Az —0, they are necessary only to uphold the
convergence. For an eigen value problem, if ¢ is an eigen
value admitted for both of the continuous and PL systems,
then, the solution is unique subject to the same surface and
bottom boundary conditions.

The PLA solution can be found by solving a homogenous

algebra equation: [B}W =0, and the dispersion relation is
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defined by det[B]=0. The left figure shows the logarithm
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of absolute value of det[B] evaluated at real values of wave e,

speed ¢ for a sech’(z) surface shear profile. In the figure, ¢ = +1 correspond the wave speeds of linear waves in still
water (normalized). The roots of the dispersion relation are at the dips in the figure where the determinant changes sigh
when it crosses zero. The shear current is in the range of [0 .5]. Normally, there are two roots that are associated with
nature surface waves, ¢, ¢,, with ¢, travels along and c, travels against the current. The other roots are those modes

whose phase speeds equal the current speed at some depth, ¢ —yU(z,) =0.

U" =0 everywhere except at the layer interfaces for PLA, while there are normaly only a limited number of inflection
points for a realistic shear profile. It has been shown by Yih"! that neutral solutions are not allowed at non-inflection
points for most of the boundary flows. Many neutral solutions from the PLA are artificial because of the real
U"(z,) = 0. One has to be very cautious in applying the PLA in the range of U, <c <U

max *



THE NEUTRAL MODES OF CERTAIN SURFACE
SHEAR FLOWS

The instability of a horizontal shear flow with a free
surface has important applications to the study of surface
wakes of ships or near water surface bodies; to the stability
of the crest of a spilling wave breaker; and to wind-drift
currents. There are only a few cases that analytic solutions
are found, thus, it largely depends on elaborated numerical
calculations to solve for realistic surface shear profiles.

A well-studied case is the linear instability of a shear flow
with a velocity profile in the form of U=l sech’(bz).

This profile has been numerically studied ! to fit
experimental data of the surface shear flow in a wake of a
hydrofoil. For the linear instability analysis, the neutral
modes form the stability boundaries in the wavenumber
and Froude number space (k, Fr). In addition, an analytic

solution is found for neutral modes at the inflection
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points'®. Knowing the valid eigen value c, for the continuous current profiles, the corresponding wavenumber and
waveform can be very precisely calculated by PLA. In the figure above, the linear stability diagram for surface gravity
waves are shown for the family profiles of U=U sech”(bz). For n=2, PLA accurately matches with the analytic

calculation'®). Here the Froude number is defined as Fr = U, / \JgD,D=b". The curves (a) and (b) are the lico of the
neutral solution associated with velocity ¢ = ysech” [tanh*1 (1/1/ n)} , and the curve (c) the locus of the neutral solution

with ¢ =0. The shaded regions are the unstable regions. The linear stability diagrams for other boundary shear flows,
such as U =U,(1—tanh(b(y/D)*), exponential, error function, and Blasius profile, are also examined with and
without including surface tension.

PROPAGATION OF SHORT WIND WAVES ON WIND DRIFT

The mechanism that modifies the propagation of surface waves by currents is well understood. However, the
applications are so far still limited to the simple velocity profiles. First of all, it is not an easy task to measure the
profile of the surface currents in most cases. Secondly, our calculations on propagation speed rely heavily on the
perturbation approximations which may not hold for short waves. With PLA, we are able to calculate the wave
propagation speed accurately for a given realistic surface flow profile, thereby, to test perturbation approximations.
Also, an implicit expression for the wave speed can be found by integrate the equation from the bottom to the surface:

+ U”’] where n:fdz [ﬂ] +[L] [k2+ v ] )
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A suitable trail function is W =W (0)e*, which yields: kK =k + f dz[e“‘ O
—c
different shear profiles with their Froude numbers close to the case of 5 m/s wind speed estimated from Wu’s

laboratory measurements!”. Stewart approximation Blasius Fr=U /(gh)®=0.34
o

holds well for long waves while Shrira’s approximation
is good for high wavenumbers (the first order
approximation only). Our approximation fits well in a
wider wavenumber range. However, a better physical
justification is needed.
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