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DYNAMICS OF CRESCENT WAVE PATTERNS IN A CHANNEL
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Summary Solving the full set of water wave equations, we perform numerical simulations of evolution of
class II instabilities. We reproduce the well known steady horse-shoe patterns and the oscillating ones. For
small initial steepness, we identify the existence of a recurrence cycle. We further study the feasibility of
experimental observation of such patterns and give an explanation for the selection mechanism.

INTRODUCTION

Instabilities of plane Stokes wave have been studied for many decades. For infinite water depth,
modulational instability is dominant for small to moderate initial steepness (ak)0 and leads to a
recurrence phenomena for small initial wave steepness (ak)0 and to breaking otherwise[1]. While
another class of instability characterized by its three-dimensionality (Mc Lean class II) dominates
for larger values of (ak)0

[5,6,7]. This instability leads usually to wave breaking through formation
of spilling breakers[9] . The presence of surfactants on the free surface of the flow may cancel the
modulational instability, however. Making possible the development of class II instabilities even for
small (ak)0. Similarly, for shallow water cases, instabilities of a plane Stokes wave may be dominated
by class II [6].

We use hence a numerical model to solve the full set of water wave equations and focus our at-
tention onto the evolution of class II instabilities in the absence of modulational instabilities. We give
numerical evidence that the class II instabilities may give rise to a recurrence phenomena similar to
the Fermi-Pasta-Ulam recurrence, for small (ak)0, and to breaking otherwise. Analysis of the evolu-
tion of several class II perturbation allows us a close comparison with experimental data, including
the well known steady horse-shoe patterns[9] and the newly discovered oscillating horse-shoe[2] .

The match is impressively good and a further study of the last patterns allows us to suggest an
explanation for the selection mechanism that may be responsible for trigging this instability in the case
of the Collard and Caulliez[2] experiment (this resonant quintet is theoretically never the dominant one
over the class II). We give explanation of the selection mechanism and simulate the experiment.

NUMERICAL EXPERIMENTS

We compute the elevation η of non-overturning surface waves in water of infinite depth using a three-
dimensional fully nonlinear method [3,4]. Application of potential theory is assumed. The resulting
Laplace equation is inverted by use of Green’s theorem and Fourier transform, resulting in a fast
numerical algorithm that solve the full set of equations. A special attention is put upon identification
of breaking.

In the first step, we compute the elevation η̄ of an exact plane Stokes waves of steepness (ak)0,
where 2a is the distance from trough to crest. The frequency of the waves is ω0 = ω(k0). A small
perturbation, η̂ of the wave surface, taking the form η̂ = εa sin[(1+ p)k0x] cos(qk0y), is added to the
Stokes wave train. Here, ε is a small number, making the amplitude of the initial perturbation field a
fraction of the Stokes waves. (1 + p, q)k0 denotes the wavevector. A perturbation velocity potential
corresponding to the perturbation surface is computed and added to the initial potential field.



RESULTS

The chosen perturbation corresponds to one of the class II unstable modes according to the McLean
diagram for the considered wave amplitude. A three dimensional horse-shoe pattern develops in
the numerical tank. Depending on the wave amplitude and on the chosen initial perturbation, either
the steady horse-shoes or oscillating patterns appear. While the steady horse-shoe pattern exhibits a
steady shape, organized in chess-like order, the new one is characterized by aligned crescents oscil-
lating in time (fig. 2). The spectrum of the wave field shows wave frequencies for the steady wave
pattern with nω0 and (2n− 1)ω0/2, n = 1, 2, ...,. The wave frequencies of the new wave pattern are:
nω0, and ∼

4
3ω0, ∼ 5

3ω0,∼ 7
3ω0,∼ 8

3ω0, etc. Those results together with geometrical comparisons
agree well with experimental observations of Su[9] and of Collard and Caulliez[2].

When considering several initial perturbations, all corresponding unstable modes develop and
coexist together, the importance of each one depending on its initial amplitude, leading to a chaotic
behavior and eventually to breaking.

For small values of (ak)0 (typically (ak)0 < 0.17), the patterns are characterized by a periodic
evolution from plane stokes waves into crescent shaped patterns. This recurrence phenomena is sim-
ilar to the Fermi-Pasta-Ulam recurrence for modulational instability (fig. 1 illustrates this recurrence
for the steady patterns). For larger value of (ak)0, the evolution of the perturbation leads to wave
breaking.

A further analysis of Collard and Caulliez[2] experiments bring us to suggest a scenario for the
appearance of the oscillating patterns. The effect of the wavemaker in a confined channel may gen-
erate, through parametric resonance, cross-waves[8] . Nonlinear self-interaction yield to the excitation
of high harmonics of the cross-waves. Unstable modes of the class II lying on those eigenmodes are
then trigged. An important point is the role of high transverse wavenumbers.

We numerically reproduce the development of steady horse-shoe patterns for an initial steepness
(ak)0 = 0.13 and of oscillating patterns for (ak)0 = 0.17 in the same channel while taking the same
initial perturbations, in perfect agreement with experimental setup and results.

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. Typical energy evolution for the main
modes corresponding to a recurrence cycle ((ak)0 =

0.13), fundamental (thick line) (k0, 0) and perturba-
tion (1.5k0, q).
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Figure 2. Free surface elevation of oscillating horse-
shoe pattern.
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