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Summary A new shallow-water theory valid for wave-current-bottom interactions with arbitrary depth and unsteady horizontal
currents is derived by Hamilton's canonical equations for surface waves, which congtitutes a systematic hierarchy of partial
differential equations for linear gravity waves in the near shore region. The first and second members of this hierarchy, the
Helmholtz equation and the mild-slope equations of Berkhoff (1972) for pure waves and of Kirby (1984) with current, are second
order. The third member is fourth order but may be approximated by Miles & Chamberlain’s (1998) explicit fourth-order partial
differential equation for pure waves which contains as a special case Chamberlain & Porter’s (1995) modified mild-slope equation .

INTRODUCTION

Wave-current-bottom interactions have all along received a widespread attention as main dynamical mechanism in
coastal area. On the background of the mild-slope equation!”, Miles & Chamberlain®® recently obtained a systematic
hierarchy of partia differential equations for linear pure gravity waves in water of variable depth by using the
expansion of the average Lagrangian, the resulting explicit forth-order partial differential equation is time-independent.
Constructing the new structure of the unknown potential field, a more systematic hierarchy of time-dependent partial
differential equation for wave-current-bottom interactions is developed by way of Hamilton's canonical equations’®,
which effectively extends the system of Miles & Chamberlain®@.

FORMULATION

We suppose that inviscid, incompressible fluid is in irrotational motion over a bed of varying depth 4(X), X = (x, y)
denoting horizontal Cartesian coordinates. The vertical coordinate, z , is measured positively upwards with the free
surface z = & (X,t), z = 0 denoting the undisturbed free surface. Now a new determination of the structure of the

unknown potential field d)(x, z, t) and & (X, t) for wave-current-bottom interactions can be given as follows

£ =& 1)+ a8, (x8) , @ = go(x, 1)+ glcoshk(z - &y )+ sk sinhk(z - &, )|, (6. 1) = R(K2,2) g, (@)
where k? =-V? = (—62/8x2 ,—62/8y2),v =(0/ox,0/0y), ¢, and ¢, are the surface elevation due to
presence of current and the velocity potential of the current, U = V@,, & denotesthe wave slope, k is determined by
the relation K:ktanhq:a)rz/g (g=kh+¢,)) 2
inwhich k isthe wavenumber and @, the relative frequency. The operators coshk(z-¢,) and k*sinhk(z-¢,)

are defined by their power-series expansionsin K 2 and expand the operator ‘R in powers of the Helmholtz operator

H=V2 +k2 =—(k? - k?) 3)
Introducing the truncated expansion
D(x,z,0) = [R(k?,z)- (0R/oK? ), H +O H?) 14 (x,1) @
The classical Berkhoff mild-slope equation™ for pure wave motion can be given as
(VZ4k?)y =—AVA-Vy ®)

where CD(X,z,t): Re[f(h,z)l//(x)e"i"”] with frequency @, A = (J/Zk)[B + kh(l— Bz)], B =tanhkh,
f(h,z)=coshQ/coshkh , O = k(z + h). (5) suggests that

Hé =-R'VR -V (R =(]/2k)[T+q(1—T2)],T=tanhq) (6)
From (4) and (6), we obtain
D%, 2,6) = gy + £ F (1, 2)p, + Gy (1, 2)¥, + G, (,2), + Gy, )%, + O(vi[ )| @
coshQ

where F =

coshgq ok? R
1 (Q—q)sinhQ—sinhqsinh(Q—q)}8R/6h . (amj OROk . (a&nj OR/0C,

, Y, =Vh-V¢ , ¥, =Vk-Vg, ¥;=V,-V, Glz(am] aR/@h =
k=k

’ 3

2 k? coshgq R e R ok? R
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Noticethat R = .[ ° F2dz . Thetotal energy of thefluid H iswritten as

= (1/2) p”dx{gé’ +j dz[VcD + @2]} Ho+eH,+c?H, (00/oz=d.) (8)
From Hamilton's canonical equations for surface waved? we have

pagl/at = 5H2/5¢1 , p8¢1/at = _5H2/5§1 C)

where O denotes avariational derivativeand o0 fluid mass density.
THE SHALLOW-WATER THEORY

Substituting (8) into (9) yields
0, ot =—C[k(VE, -U)tanhg +V -U]-V<, - U + j Ldz-V - j Ndz + 6P/ 5¢,
a¢1/6t:_g§1_v¢1'u+¢1 (Vé/o' )tanhq

where the detailed expressions for L, N, and P are given in Appendix. Elimination & from (10) leads to the time-
dependent equation for the new shallow-water theory for wave-current-bottom interactions

%NV-U)D—@—{D%M(V;O -U)tanhgl+ [k(V¢, - U)tanhg][k(V ¢, - U)tanhg +V-U]} ¢

Dt? Dt

%o oP D 0
+gj Ldz — vj Ndz +—|=0 [—=—+U-vj

5(151 Dt ot
Accepting the common assumption for the mild-slope equation that terms with V', VA, Vi, and V £, can be ignored,
(12) reduced to the well-known Kirby mild-dope equatlon with current” which includes (5). When neglecting current
U and ¢, , and considering purely harmonic motion, ¢1 X, t Re[cb e’ ] (11) leads to Mile & Chamberlain's

explicit forth-order partial differential equation'®
(k24— K) @, +V - {AVD, +( [GIW(V- VD, )+ [M(Vh- Vb, )-

V(62 W(Vh-va,)+ (16)V e, |Vh) =
(A= Hand f =F inMile & Chamberlain’s notation). The detailed expressions for K, M , G and <( )> are given

(10)

(11)

(12)

in[2]. Discarding al termsof G reduces (12) to Chamberlain & Porter’s modified mild-slope equation™®.
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APPENDI X: EXPRESSIONSFOR L, N AND P IN (10) AND (11)

L=¢(VF) +VF-(FV$, + ¥ VG, +¥,VG, + ¥,VG,)+ ¢ F? + F.(P,G,. +¥,G,. + ¥,G,.),
N = F?V¢, + F($VF + ¥ VG, + ¥,VG, + V,VG, )+ V(F§,)-(VAVG, + VEVG, + V{ VG, ) +
(VG + G2 |+ 9,6.G,. + W,G,.G,. [Vh+ {9, |VG, ] + G2 |+ ¥,G..G,. +
W,G,.Gy Wi+ (0, |(VG, Y + G2 |+ W,G,.G,, +9,G,.G,. [VEy + VAVG, -($,VG, + ¥,V G,) +
VKVG, -(¥ VG, + ¥,VG,)+V VG, - (P VG, + ¥,VG,) ,

P=[[ax] i dz{(J/z)[Gf (V,) + G2(VY,) + G2 (V‘P3)2]+ G,G,VY, V¥, +G,G.VY, - V¥, +

G,G VY, V¥, + (G VY, + G,VY, + G,VY,)- [V(4,F)+ ¥,VG, + ¥,VG, + ¥,VG,]} .
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