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Summary A new shallow-water theory valid for wave-current-bottom interactions with arbitrary depth and unsteady horizontal 
currents is derived by Hamilton’s canonical equations for surface waves, which constitutes a systematic hierarchy of partial 
differential equations for linear gravity waves in the near shore region. The first and second members of this hierarchy, the 
Helmholtz equation and the mild-slope equations of Berkhoff (1972) for pure waves and of  Kirby (1984) with current, are second 
order. The third member is fourth order but may be approximated by Miles & Chamberlain’s (1998) explicit fourth-order partial 
differential equation for pure waves which contains as a special case Chamberlain & Porter’s (1995) modified mild-slope equation .  
 

INTRODUCTION 
 
Wave-current-bottom interactions have all along received a widespread attention as main dynamical mechanism in 
coastal area. On the background of the mild-slope equation[1], Miles & Chamberlain[2] recently obtained a systematic 
hierarchy of partial differential equations for linear pure gravity waves in water of variable depth by using the 
expansion of the average Lagrangian, the resulting explicit forth-order partial differential equation is time-independent. 
Constructing the new structure of the unknown potential field, a more systematic hierarchy of time-dependent partial 
differential equation for wave-current-bottom interactions is developed by way of Hamilton’s canonical equations[3], 
which effectively extends the system of Miles & Chamberlain[2]. 
 

FORMULATION 
 
We suppose that inviscid, incompressible fluid is in irrotational motion over a bed of varying depth h , ( )x ( )yx,≡x  
denoting horizontal Cartesian coordinates. The vertical coordinate, z , is measured positively upwards with the free 
surface ( )tz ,xζ= ,  denoting the undisturbed free surface. Now  a  new determination of the structure of the 

unknown potential field Φ  and 

0=z
x( )tz,, ( t,x )ζ  for wave-current-bottom interactions can be given as follows 
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where ( ) ( )yxyx ∂∂∂∂≡∇∂∂−∂∂−≡−∇≡ , , ,k 222222 ,  0ζ  and 0φ  are the surface elevation due to 

presence of current and the velocity potential of the current, 0φ∇=U , ε  denotes the wave slope, κ is determined by 

the relation                    gqk r
2tanh ωκ ==         ( )( )0ζ+= hkq                                                                      (2) 

in which  is the wavenumber and k rω the relative frequency. The operators  ( )0-zkcosh ζ  and ( )0
-1 -zksinhk ζ  

are defined by their power-series expansions in 2k , and expand the operator ℜ in powers of the Helmholtz operator 
H ( )2222 k kk −−=+∇≡                                                                          (3) 

Introducing the truncated expansion 
( ) ( ) ( )[ kzktz =∂∂ℜ−ℜ=Φ k

22  k,,,x H O+ (H 2 ) ] ( )t, 1 xφ                                                  (4) 
The classical Berkhoff mild-slope equation[1] for pure wave motion can be given as 

   ( ) ψψ ∇⋅∇−=+∇ − AAk 122                                                                                                       (5) 

where ( ) ( ) ( )[ ]tizhftz  e,Re,, ωψ −=Φ xx  with frequency ω , ( ) ( )[ ]2121 BkhBkA −+= , , khB tanh=
( ) khQzhf coshcosh, =  , Q . (5) suggests that   ( hzk += )
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From (4) and (6), we obtain 
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Notice that . The total energy of the fluid is written as   dzFR
h∫−= 0 
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From Hamilton’s canonical equations for surface waves[3] ,we have 
                121121 H       ,     H δζδφρδφδζρ −=∂∂=∂∂ tt                                                                   (9) 

where δ denotes a variational derivative and ρ  fluid mass density.  
 

THE SHALLOW-WATER THEORY 
 
Substituting (8) into (9) yields 
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where the detailed expressions for L , N  and , P  are given in Appendix. Elimination 1ζ  from (10) leads to the time-
dependent equation for  the new shallow-water theory for wave-current-bottom interactions 

( ) ( )[ ] ( )[ ] ( )[ ]







 ∇⋅+

∂
∂

==







+⋅∇−+







 ⋅∇+⋅∇⋅∇+⋅∇−⋅∇+

∫ ∫− −
            0                                           

 tanh tanhtanh

0 0 

 

 

 
1

1000
1

2
1

2

U

UUUUU

tDt
DPNdzLdzg

qkqkqk
Dt
D

Dt
D

Dt
D

h h

ζ ζ

δφ
δ

φζζζ
φφ

(11) 

Accepting the common assumption for the mild-slope equation that terms with khF ∇∇∇  ,  , , and 0ζ∇  can be ignored, 
(11) reduced to the well-known Kirby mild-slope equation with current[4] which includes (5). When neglecting current 

and U 0ζ  , and considering purely harmonic motion, ( ) ( )[ ]ti  ω−Φt 01 eRe,φ = xx , (11) leads to Mile & Chamberlain’s 
exp l differential equationlicit forth-order partia [2] 
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( HA ≡ and  in Mile & Chamberlain’s notation). The detailed expressions for and Ff = , K , M G ( ) are given 

in [2]. Discarding all terms of reduces (12) to Chamberlain & Porter’s modified mild-slope equationG [5]. 
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APPENDIX: EXPRESSIONS FOR  AND L , N P  IN (10) AND (11) 
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