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Summary We developed a weak turbulent theory of the wind-driven sea, based on the assumption that the main physical process is
the resonant nonlinear four-wave interaction. This model far developed analytically, supported by the massive numerical experiments
is possible to explain from the first principles the balk of experimental facts on the wind-driven surface wave turbulence collected in
physical oceanography.

Physical oceanography collected a huge amount of experimental data on the wind-driven sea. These data include fre-
quency and angular-frequency spectra of surface elevation as well as spatial spectra measured from planes and satellites.
A lot of collected data present fetch and duration dependance of such sea integral characteristics as energyε =< η2 >
and the peak frequencyωp. This variety of experimental data can be essentially reduced by the use of Kitaigorodskii
similarity conjecture [1], stating that the major features of wind-driven sea can be expressed in terms of dimensionless
variables (hereU is wind velocity):

ν =
ωpU

g
, e =

εg2

U4
, χ =

xg

U2
.

Experiments show thate, ν are powerlike functions on the dimensionless fetchχ:

e = uχp, ν = vχ−q (1)

Here0.75 < p < 1.0, 0.24 < q < 0.3 andu = (5 ∼ 10) · 10−7, v ' 10 are constants, which vary in different studies.
Omnidirectional frequency spectra can be presented in the universal form:

F (ω) =
g2

ω5
F

(
ω

ωp
, ν

)

The dependance onν = 1/c (c is a "wave age") is relatively slow.
Since the seminal works of Hasselmann [2], it is widely accepted that the wind-driven sea can be described by the kinetic
wave equation imposed to the spatial spectrum of wave actionN(~k):

∂Nk

∂t
+

∂ω

∂~k

∂Nk

∂~r
= Snl + Sin + Sds (2)

HereSin is the wind input,Sds is dissipation term, andSnl is nonlinear transfer term describing exchange of wave energy
due to four-wave resonant nonlinear processes.Snl can be calculated exactly from the Euler equation for potential flow
of the fluid with free surface in presence of gravity. The termSin cannot be found analytically due to a strong turbulence
in the atmospheric boundary layer. The excitation of waves by wind is the Cherenkov-type instability. It leads to the
following phenomenological form ofSin:

Sin = β ·Nk, β ' µ
ρa

ρw
ωf(ξ), ξ =

Uω cos θ

g

Heref(ξ) = 0 if ξ < 1, andµ ' 0.1 is an empiric small parameter, appearing due to turbulence of atmosphere,ρa, ρω

are densities of air and water. Forξ À 1, we haveF (ξ) ' ξκ, 1 < κ < 2. The termSin is known from the experiments
with poor accuracy (scatter ofSin has the same order asSin).
The most important mechanism of wave energy dissipation is generation of parasitic capillary harmonics on the breaking
wave crests. This process takes place uniformly on the whole ocean surface. At high wind velocities it turns to the
"microbreaking" process. This process leads to absorption of energy in the high-frequency part of wave spectra. The
direct white-capping on the crests of leading waves is the dissipation mechanism of secondary importance, responsible
for slow saturation of the downshift process for waves moving faster than wind. There are neither analytical nor serious
experimental studies making possible to derive a well-justified expression forSds. Some hand-woven forms ofSds are
used worldwide in the operational models of wave prediction (WAM, SWAN,etc.) Mostly they are constructed in a way
to provide the local in frequency energy balance, i.e.

Sin + Sds = 0

In these scenarioSnl terms plays an auxiliary role. In our report we offer a completely different approach [3-6]. In
accordance with all summary of experimental facts we assume thatSds is essential only in the region of high wave
numbers, where it plays the role of a "universal sink" and does not affect essentially spectral dynamics in the area of
spectral peak. In the leading order the wind-driven sea can be described by the conservative kinetic equation
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Figure 1. Left panel — comparison of numerical solutions (hard line) for the kinetic equation with JONSWAP approximation (dash)
for wave age 1.42 (time 5.3 hours). Generation is given by Hsiao & Shemdin (1983) formula, wave speed is20m/s. Dependence of
α on wave age follows Babanin & Soloviev (1998) with the exponentκ = 1 andα0 = 0.00127. Right — self-similar functionU(ξ)

(ξ = |k|t6/11) for different times (see legend, in hours). Bold line is the Kolmogorov inverse cascade solutionU ∼ ξ−23/6. Wave
input is given by Hsiao & Shemdin formula for wind speed10 m/sec

together with the wave-action balance equation
〈

∂Nk

∂t

〉
+

〈
∂ω

∂~k

∂Nk

∂~r

〉
= 〈Snl〉 (4)

The brackets presume integration over the~k-space. Eq.(2) describes weak turbulence that is governed by the direct cascade
of energy and the inverse cascade of wave action. Both uniform

∂Nk

∂t
= Snl (5)

and stationary
∂ω

∂~k

∂Nk

∂~r
= Snl (6)

versions of Eq.(1) have two-parameter families of self-similar solutions. The parameters could be found from balance
Eq.(2). The self-similar solution of Eq.(6) in dimensionless variables reads:

n(κ, χ, θ) = b5χ5β−1/2Pβ

(
bχβκ, θ

)
, (7)

whereb, β are free constants. Eq.(6) presumes that for Eq.(1)

q =
2p + 1

10
, v = u1/5Cβ , Cβ ' 1 (8)

Relations (8) are very well confirmed by experimental data. Eq. (5) has following self-similar solutions

n(κ, τ, θ) = b19/4τ
19β−2

4 Pβ(bκτβ , θ) (9)

Hereτ = tg/u is a dimensionless duration. Solution (9) is in accordance with the experimental data that in the case of
duration-limited studies are scant. However for Eq. (5), asymptotic self-similarity of its solution is confirmed very well by
massive numerical experiments [4,6]. It is remarkable that the shape of frequency spectra, obtained in these computations,
almost perfectly fits the experimental data collected in the fetch-limited studies (Fig.1).
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