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The cascade idea is central to our understanding of an agiptiroad scope of natural phenomena. One of the earliest
mathematical cascade models, the Galton-Watson processd suggested in 1874 as a solution to the "problem of the
extinction of families.” This kind of branching cascadessvater used for theoretical treatment of chemical and raucle
chain reactions, electron multipliers, and statisticsa@fmers among other problems. These cascades are lindhe as
agents are assumed to not interfere with each other.
Studies of turbulence provided a wealth of examples of meali cascade processes. Among them are the Richardson
cascade of energy in the inertial range that underlies theatassical approach of Kolmogorov [2], the Kraichnan re-
verse enstrophy cascade for two-dimensional turbulericafi@ various random cascade models suggested as thabretic
explanations of the unsolved problem of turbulence intgemcy.
We propose that many other complex multi-scale mechanivahpmena can be viewed as nonlinear cascades. They
include coagulating particles in multiphase flows, coatesdrops in clouds and cracks in solids; the asteroid sigidi
butions due to collisional fragmentation, etc.
Nonlinear cascades are characterized by strong interabttween the agents. Unlike linear cascades, they are are
poorly understood. Their studies have relied on systerifipéeatures and assumptions. As a result, the generairpict
remained unknown. Our purpose is to turn the attention tooadrclass of nonlinear scale-free conservative cascades,
and to show that seemingly different systems reveal commatufes when considered from this unifying viewpoint. In
particular, we derive a nonlinear conservative cascadatemy and demonstrate how it can give rise to stationarygpow
law spectra. We show that the power-law exponent depengorthree indices characterizing a particular cascade: the
‘conservation law’ indexn, the scale homogeneity index, and thenonlinearity indexkh. This result is illustrated by
Table 1.
Let us set up the stage. We think of cascades as statistibattive systems of interacting agents of different typs.aA
result of an interaction of two or more agents, ‘new’ ageatst, whereas ‘old’ agents annihilate. For instance, theltes
of hydrodynamic interactions between turbulent eddiedifepto exchange of their energies, is viewed as annihiaifo
‘old’ eddies and creation of ‘new’ eddies having alteredrgies in their place.
A cascade state is specified by the agent distribution, @edcspectrump (¢, s), which equals the average number of
agents of the type at the timet:

n(t,s) = (N(t,s)) . y

Here N(t, s) is the instantaneous value for the number of agents. Whisrcontinuousn(t, s)ds must be interpreted
as the average number of agents in the intefvad + ds). Common examples of agent distributions are the turbulent
energy spectruni (¢, k) in homogeneous isotropic turbulence, where the scalarmamaberk plays the role of; and

the distributionn(¢, m) of masses of particle clusters formed due to cluster cotignlar/and fragmentation. Here we
will assumes to be a real number, and refer to it as size.

The primary goal of a cascade theory is to predict the spectruFrom the master equation for statistical systems [4],
we derive a novel formahonlinear cascade equatipmwhich describes temporal evolution offor a general nonlinear

cascade:
n(t,s) = {(v(s,{si}) ), 2

Table 1. Some scale-free conservative cascades with power-lavirapets) o« s~ 7, discovered in various contexts. For all of them
T=14 (m+a)/h.

Cascade type h p a T Notes
Turbulence energy 3/2 0 1 5/3 Kolmogorov (1941)
Enstrophy 3/2 2 1 3 Kraichnan (1967)
Passive tracer 1 0 0 1 Batchelor (1959)
Cluster Coagulation (Aggregation) 2 1 a (B+a)2 Pushkin & Aref (2002)
1D-Diffusion Limited Cluster Aggregation 3 1 0 4/3 Takayasu (1988)
‘Spontaneous’ fragmentation 1 1 1 3 Bem-Naim & Krapivsky (2000)
Collisional fragmentation 2 1 2/3 11/6 Dohnanyi (1969)
Percolation 2 1 2 5/2
Scale-free networks 1 1 1 3 Barabasi & Albert (1999)




where the following notation has been introduced: for amgcfion f({s;}),

{(FHsHN @ =D F{sH) (W {si} [ND). 3)
{s:}

Herewv(s, {s;}) is the number of agents of sizecreated due to an "elementary” interaction of agents oSsjag};

W ({si},[N]) is the probability of this interaction per unit time, the age brackets emphasize dependence on the whole
distributionN. The summation in (3) is carried over all s¢ts}.

As an example, we show that both the turbulent energy traegfgation [5] and the Smoluchowski coagulation equation
[6] can be written in this form. At this point equation (2) istrclosed, as the interaction strength depends on microdis-
tribution N. However, for a wide class of conservative scale-free ascthe asymptotic spectra can be found without
solving the closure problem.

The condition that a processes is scale free has severaaqosisces: first, interactions have no characteristic size.
mathematical terms: i; = As;, N' = A" N, then

(W({si} [Ny = A (W({s:i},[N])) - (4)

For instance, for homogeneous isotropic turbulemce 1 and this value can be traced to the gradient operator in the
Navier-Stokes equations. For coagulatiaris the homogeneity degree of the coagulation kernel.
Next, the interactions must be scalable in agent densitys;Tifis; = s;, N’ = AN,

(W{si},IND ) = A" (W ({s:},[N]) - (%)

For example, for homogeneous isotropic turbulelace 3/2, because the interactions depend on the third order velocit
correlation function, and velocity scales as square roenefgy. For coagulatioh = 2 due to binary collisions.
Let the conservation law read:

Z v(sj,{si})s]" = 0, for any set{s;}. (6)

Sj
For instance, the energy conservation law for turbulenellgin = 0, while enstrophy conservation for 2D turbulence
results inm = 2. Mass conservation in coagulation and fragmentation ceescgieldsn = 1.
A cascade can be maintained in a stationary state by cor&ierihg’ through an influx of the conserved quantifyat
some scaleg. Then, we demonstrate that steady spectrum has the form:

— m+ «
n(s, 50, B) = B'/"s 77 f(s0/s), 7=1+——. @)

We show that for wide classes of interactions the system teteip "forgets” the small scalg at much larges. This is
referred to asimilarity of the first kindor complete similarityf7]. Then,

lim f(z) = C, and, thusn(s) ~ CEYhsT, (8)
T—

Such interaction classes depend on asymptotic propeiftiteednteractions. They have been determined for cluster
coagulation [8] and the weak wave approximation in turboéetilocality conditions’) [9]. The constar® was first in-
troduced by Kolmogorov [2], and is often denoteds It is clearly interaction-dependent and, therefore, naiversal.

For cluster coagulation an expression bwas found in [8].

The important relation (8) is our central result. It inclsdes particular cases the Kolmogorov spectrum, the Kraithna
spectrum for two-dimensional turbulence, the Batchelecspim for a passive tracer, and other cascades, including s
fractal models of intermittency. Table 1 confirms that (73,ha fact, much broader applicability. It can also serve as a
powerful tool for analyzing new power-law spectra geneatdtg cascade processes, due to the clear physical meaning of
the indicesx, h, andm.
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