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Summary The one- and two-point velocity distributions of homogere@motropic turbulence are obtained as the
solutions of the closed set of equatipns which are derivech fthe Lundgren-Monir{ 1967)  equations using the
the cross-independence hypothesis This problem was fppstterl by Tatsum{2000) in ICTAM2000, and new
concrete results and strengthend physical arguments a@serged in the present version

CROSSINDEPENDENCE HYPOTHESIS

Cross-Independence

The cross-independence of two velocities u(x;, ) t andu(x, ) t is ddfiag the independence of their sum
u-=(uitu2) /2 and differencau- €u. ui)) 2. Unlike the ordinary independencaiof d anwhich is only valid for
large values of the distance x= xi;, tleeoss-independence  is shown to be valid for benttpe and small values of
the distance. This may be understood from a simple example>=XMX+Y)/2)> <((X Y)/2)>.

Independence of Small and Large Eddies

It is interesting to note that the cross-independence isnisdly identical with Kolmogorov'g 1941)  basic premise
that small-scale eddies characterized by the velocityedifice2u. are independent from large-scale eddies character-
ized byu: andu.. Experimental and numerical supports have baem diy Sreenivasan et.411998) showing that
the cross independence is accurately satisfied for thardist of order of the inertial range

ONE-POINT VELOCITY DISTRIBUTION

Cross-Velocity Distributions
For homogeneous turbulence we define the one- and two-pelotity distributions of the velocities: anak by
f(uy,t) and f2(uy, uz;r, 9 respectively likewise for the velocity.  by-gu.,r, ),t for ly(u,r,t), and for
the pair ofu- andu. by @(us,u. r, )t Then the cross-independence.of and sdgherelationship
fP(us, uz r,t)duduz =¢?(u-, u-; r, 9 du-du- (D
g?(u-, u;r, y=g+(u,r,dg(u,r,H (2

One-Point Veocity Distribution
On substitution of the cross-independence relatidl)s (&pd e Ltimdgren-Monin equation for the one-point
velocity distribution fus, 3 is simplified as
[Blot+a(t) Al u: 7 f(u,t)=0 (3
at)y=(23)wvlim . o 3dAr *f u ?g(u,r,tdu (4)
wherecar( ) is the inverse diffusion constant It can be showrh@urthatax( } is related with the mean energy
dissipation ratee( )t and the energy of turbulemige) t as

a(y=(13) (1 _ (5)
£(t)=<e(x, )>=vZ -’ u(x, ) /0 x)*>=dE() /dt (6)
E(t) = <E(x, t)> =(1/2)< u(x,t) > (7)
Eqg. (3) permits a self-similar solution for the one-point vetpdistribution
f(us, t)= fo( Uy, ) =(t/ 41TTOX) “EXP ur 2 t/Ac (8)
a(t)=ocnt? s(t)==ot? E(f) =B t", oo =(1/3)=c=(18)E (9)

which represents the three-dimensionatmal distribution.

Inertial Similarity

The equation(3) and the solutid8) of the one-point velocityrittigtion clearly indicate that it depends upon
only one parametecx( )t (1 3)=( )t and not on the viscosity  explicitlyhisTmeans that the one-point velocity
distribution of homogeneous isotropic turbulence obegsbrtial similarity of Kolmogorov's sense

The inertial normality of the velocity distribution was first pointed out by Hdpl952) as a particular solution re-
presenting the velocity distribution functional but doed seem to have drawn attention of later researchers It will
be shown below that the two-point velocity distributionsabbey the normal distribution so that timertial norm-
ality seems to be a universal character of the statistics of honeoges turbulence

It may be interesting to note that the energy dissipatioh) texjressed in terms of the integral of turbulent fluc-
tuation so that it actually satisfies tifieictuation-dissipation  relationship etftistical physics
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Viscous Similarity

It should be noted that the inertial similarity is not a uréqeonsequence of e(d)  since it permits another Jimit
a()=vy(t), ym=(23)lim o dlor *f u *g(u,r,t)du (10)

with finite y(t). This similarity associated with the finite engy dissipatione( ¥ and the viscosity  constitutes

the full-set of Kolmogorov's local equilibrium and may bdled the viscous similarity.

The viscous normal distribution (8) associated with the energy dissipat{ci®) proportionah&oviscosity\, is

already familiar for us as the normality of weak turbulenoenposed of large number of independent small eddies

TWO-POINT VELOCITY DISTRIBUTIONS

Velocity-Sum Distribution
On substitution of the cross-independence relations imtoLundgren-Monin equation for the two-point velocity dis-
tribution, we obtain a closed equation fof fus, u= r,;) 2%@gu.,u- r,;).t Then on sitlsson of (2) and integ-
ration with respect tar, this equation is reduced to the fallgrequation for the velocity-sum distribution:
[Blot +H(12)a(t) OB u- g «(u,r,9)=0 (1)

This equation is identical to e¢3)  for the one-point velocitstidbution except for the factot 2/ afx( )t  Thus
its solution is immediately given from e(8) as

g +(us, r, )= go(us, )  t /2TTC0) exp u- >t /2c] (12)
Comparison of this result with e¢8)  clearly shows that the eigfesum distribution(12) is given by the convo-
lution of two independent velocity distributiorfs) at the misix: andx..
Although theinertial normal distribution (12) is valid for all values of >0, it must coincide wi{f8) n the limit
of r -0 since g+«(u+r, } - fuy, } inthislimit This implies an abrupt change of(a-, r, ) tt ra&0, but such a
discontinuity is replaced by the continuous change undewrikcous similarity mentioned abave

Lateral Velocity-Difference Distribution
Integration of the closed equation fdP fus, u. r; ) 2=®Qu.,u. r,;) t with resptxu. gives the equation for the
velocity-difference distribution g u., r, )t If we define the vanlas asu- € u, vy w,r € r0,0), we can derive
the following equation for the lateral velocity-differendistribution:

[t H12)a(t)d A v] g (v,r,1H)=0 (13)
Since this equation is the one-dimensional version of &) , salstion is immediately given froi12) as

g (v,rt=go(v,)t/2Tt) Pexpg V> t 2a] (14)

The same physical arguments as those for the soltl@h afeapp theinertial normal distribution (14).
In particular since the distribution g( -v, ) t has to reduce te delta distribution in the limit of 15 0, its abrupt
change should take place more drastically compared withvéhecity-sum distribution This discontinuity is again
resolved by taking account of the viscous similarity

Longitudinal Velocity-Difference Distribution
Following the same process as for the lateral distributicn olvtain the equatign

[BlOt +12)a(t) O O u-? H1B)(8u- +u’ AP u) AP t gn(u, rY o (15)
for the longitudinal velocity-difference distribution @iously, this equation permits thi@ertial normal distribution,
gu(u, r,)=go(u, ) t2Im) “exp UV t L2 (16)

for large distance.r However it also has iaertial range  solution whichbtaimed from the self-similar equatipn
(1 (2099 )K" (209 C’K = (1699 K =0 (17)
Z=u. r®(t? )™, gu(u, )= t* ko)™ KQ) (18)

The solution K &) satisfies the inertial-range similarity u **

larity at £ =9/2) " and algebraic tails

mdatakes asymmetric form with a cusp-like singu-

CONCLUSION

Theinertial normality of the velocity distributions in homogeneous isotrdpibulence seems to have been estab-
lished so far as the one- and two-point statistics This plewius with good scope for the studywidcous similar-
ity of this turbulence and the extension of the present apprtzaoiore complex turbulent motions
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