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INERTIAL SIMILARITY OF VELOCITY DISTRIBUTIONS
IN HOMOGENEOUS ISOTROPIC TURBULENCE
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Toyota Techno Service Co Tokyo - Japan** . 135 0091,

The one- and two-point velocity distributions of homogeneous isotropic turbulence are obtained as theSummary
solutions of the closed set of equations which are derived from the Lundgren-Monin equations using the, (1967)
the cross-independence hypothesis This problem was first reported by Tatsumi in ICTAM and new. (2000) 2000,

.concrete results and strengthend physical arguments are presented in the present version

CROSS-INDEPENDENCE HYPOTHESIS

Cross-Independence
The cross-independence of two velocities = t and = t is defined as the independence of their sumu u x u u x1 1 2 2( , ) ( , )

= + / and difference = / Unlike the ordinary independence of and which is only valid foru u u u u u u u+ -( ) 2 ( ) 2.1 2 2－ 1 1 2

large values of the distance = the is shown to be valid for bothlarge and small values ofr x x2－ 1, cross-independence
. < > <(( ) 2) >－<(( － ) 2) >.the distance This may be understood from a simple example: XY= X+Y / X Y /r 2 2

Independence of Small and Large Eddies
It is interesting to note that the cross-independence is essentially identical with Kolmogorov's basic premise(1941)
that small-scale eddies characterized by the velocity difference are independent from large-scale eddies character-2u-

ized by and Experimental and numerical supports have been given by Sreenivasan et al showing thatu u1 2. .(1998)
.the cross independence is accurately satisfied for the distance of order of the inertial ranger

ONE-POINT VELOCITY DISTRIBUTION

Cross-Velocity Distributions
For homogeneous turbulence we define the one- and two-pointvelocity distributions of the velocities and by, u u1 2

f t and f ; t respectively likewise for the velocity by g t for byg t and for( , ) ( , , ) , ( , , ), ( , , ),u u u r u u r u u r1 1 2
(2)

+ + + - - -

( , , ). , ,the pair of and by g ; t Then the cross-independence of and gives the relationshipu u u u r u u+ - + -
(2)

1 2

( , , ) ( , , ) (1)f ; t d d =g ; t d d(2) (2)u u r u u u u r u u1 2 1 2 + - + -

( , , ) ( , , ) ( , , ) (2)g ; t =g t g t(2) u u r u r u r+ - + + - -

One-Point Velocity Distribution
On substitution of the cross-independence relations and the Lundgren-Monin equation for the one-point(1) (2),
velocity distribution f t is simplified as( , )u1

[∂ ∂ α( )｜∂∂ ｜ ] ( , ) 0 (3)/ t + t / f t =u u1 1
2

α( ) (2 3)ν ｜∂∂ ｜∫｜ ｜ ( , , ) (4)t = / lim / g t d｜ ｜→0r r u u r u2 2
- - - -

where t is the inverse diffusion constant It can be shown further that t is related with the mean energyα( ) . α( )
dissipation rate t and the energy of turbulence t asε( ) ( )E

α( ) (1 3)ε( ) (5)t = / t
ε( ) <ε( , )> νΣ <(∂ ( , ) ∂ ) > － ( ) . (6)t = t = u t / x = d t /dtx xi j = i j, 1

3 2 E
( ) < ( , )> (1 2)<｜ ( , )｜ > (7)E Et = t = / tx u x 2

.(3) .Eq permits a self-similar solution for the one-point velocity distribution
( , ) ( , ) ( 4πα ) [－｜ ｜ 4α ] (8)f t = f t = t / exp t /u u u1 0 1 0 1 0

3 2 2/

α( ) α , ε( ) ε , ( ) , α (1 3)ε (1 3) (9)t = t t = t t = t = / = /0 0 0 0 0 0
- - -2 2 1E E E

.which represents the three-dimensionalnormal distribution

Inertial Similarity
The equation and the solution of the one-point velocity distribution clearly indicate that it depends upon(3) (8)
only one parameter t = / t and not on the viscosity explicitly This means that the one-point velocityα( ) (1 3)ε( ) ν .

.distribution of homogeneous isotropic turbulence obeys the of Kolmogorov's senseinertial similarity
The of the velocity distribution was first pointed out by Hopf as a particular solution re-inertial normality (1952)
presenting the velocity distribution functional but does not seem to have drawn attention of later researchers It will.

inertial norm-be shown below that the two-point velocity distributions also obey the normal distribution so that the,
.ality seems to be a universal character of the statistics of homogeneous turbulence

It may be interesting to note that the energy dissipation t isexpressed in terms of the integral of turbulent fluc-α( )
, .tuation so that it actually satisfies the relationship of statistical physicsfluctuation-dissipation
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Viscous Similarity
.(4) ,It should be noted that the inertial similarity is not a unique consequence of eq since it permits another limit

α( ) νγ( ), γ( ) (2 3) ｜∂ ∂ ｜∫｜ ｜ ( , , ) (10)t = t t = / lim / g t d｜ ｜→0r r u u r u2 2
- - - -

with finite t This similarity associated with the finite energy dissipation t and the viscosity constitutesγ( ). ε( ) ν
.the full-set of Kolmogorov's local equilibrium and may be called theviscous similarity

The associated with the energy dissipation proportional tothe viscosity isviscous normal distribution (8) (10) ν
.already familiar for us as the normality of weak turbulence composed of large number of independent small eddies

TWO-POINT VELOCITY DISTRIBUTIONS

Velocity-Sum Distribution
On substitution of the cross-independence relations into the Lundgren-Monin equation for the two-point velocity dis-
tribution we obtain a closed equation for f ; t = g ; t Then on substitution of and integ-, ( , , ) 2 ( , , ). , (2)(2) 3 (2)u u r u u r1 2

-
+ -

ration with respect to this equation is reduced to the following equation for the velocity-sum distribution:u-,
[∂ ∂ (1 2)α( )｜∂∂ ｜ ] ( , , ) 0 (11)/ t + / t / g t =u u r+ + +

2

.(3) 1 2 α( ). ,This equation is identical to eq for the one-point velocity distribution except for the factor / of t Thus
its solution is immediately given from eq as.(8)

( , , ) ( , ) ( 2πα ) [－｜ ｜ 2α ] (12)g t = g t = t / exp t /+ + + +u r u u0 0 0
3 2 2/

Comparison of this result with eq clearly shows that the velocity-sum distribution is given by the convo-.(8) (12)
(8) .lution of two independent velocity distributions at the points andx x1 2

Although the is valid for all values of it must coincide with in the limitinertial normal distribution (12) >0, (8)r
of since g t f t in this limit This implies an abrupt change of g t at but such ar u r u u r r =→0 ( , , )→ ( , ) . ( , , ) 0,+ + + +1

.discontinuity is replaced by the continuous change under the viscous similarity mentioned above

Lateral Velocity-Difference Distribution
Integration of the closed equation for f ; t = g ; t with respectto gives the equation for the(2) 3 (2)( , , ) 2 ( , , )u u r u u r u1 2

-
+ - +

velocity-difference distribution g t If we define the variables as = u v w = r we can derive- - - - - -( , , ). ( , , ), ( ,0,0),u r u r
the following equation for the lateral velocity-difference distribution:

[∂ ∂ (1 2)α( )∂ ∂ ] ( , , ) 0 (13)/ t + / t / v g v r t =2 2
- -⊥

Since this equation is the one-dimensional version of eq itssolution is immediately given from as.(11), (12)
( , , ) ( , ) ( 2πα ) [－ 2α ] (14)g v r t = g v t = t / exp v t /⊥ 0 0 0- - -

1 2 2/

(12) (14).The same physical arguments as those for the solution are applied to theinertial normal distribution
In particular since the distribution g v r t has to reduce to the delta distribution in the limit of r its abrupt, ( , , ) →0,⊥ -

change should take place more drastically compared with thevelocity-sum distribution This discontinuity is again.
.resolved by taking account of the viscous similarity

Longitudinal Velocity-Difference Distribution
, ,Following the same process as for the lateral distribution we obtain the equation

[∂ ∂ (1 2)α( )∂ ∂ (1 3)(8 ∂ ∂ )∂ ∂ ] ( , , ) 0 (15)/ t + / t / u + / u + u / u / r g u r t =2 2 2
- - - - -‖

. , ,for the longitudinal velocity-difference distribution Obviously this equation permits theinertial normal distribution
( , , ) ( , ) ( 2πα ) [－ 2α ] (16)g u r t = g u t = t / exp u t /‖ 0 0 0- - -

1 2 2/

. , ,for large distance r However it also has an solution which is obtained from the self-similar equationinertial range
(1－(2 9)ζ ) ″－(20 9)ζ ′－(16 9)ζ 0 (17)/ K / K / K =３ 2

ζ ( α ) , ( , , ) ( α ) (ζ) (18)=u r t / g u r t =r t / K- -
- / / - / /1 3 2 1 3 1 3 2 1 3

0 ‖ 0

The solution K satisfies the inertial-range similarity u r and takes asymmetric form with a cusp-like singu-(ζ) ∝-
1 3/

ζ (9 2) .larity at = / and algebraic tails1 3/

CONCLUSION

The of the velocity distributions in homogeneous isotropicturbulence seems to have been estab-inertial normality
viscous similar-lished so far as the one- and two-point statistics This provides us with good scope for the study of.

.ity of this turbulence and the extension of the present approachto more complex turbulent motions
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