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Summary We give a summary of the derivation of an implicit subgrid-scale model for LES which is obtained from a new approach for
the approximation of hyperbolic conservation laws. Adaptive local deconvolution is performed using a quasi-linear solution-adaptive
combination of local interpolation polynomials. The physical flux function is substituted by a suitable numerical flux function. The
truncation error has physical significance and effectively acts as subgrid-scale model. It can be determined by a modified-differential-
equation analysis and is adjustable through free parameters. Computational results for Burgers equation show that the model with
parameters identified by evolutionary optimization give significantly better results than other models.

INTRODUCTION

The key idea of implicit subgrid-scale (SGS) modeling is that the truncation error of an under-resolved discretization can
be utilized to model the effects of the unresolved scales. In order to reveal the connection of implicit to explicit SGS
models the differential equation has to be analysed [1, e.g.]. Without loss of generality we initially focus on a generic
scalar conservation la®u + 9, F'(u) = 0 . The finite-volume semi-discretization

Ovin + G * 0, Fn(un) = €sas 1)

is based on applying an explicit spatial filtering= G * u, whereG is the top-hat function with the spatial averaging
scaleh. The grid functionuy = {u;} results from the spectrally accurate projection~ (x;). The cutoff frequency
¢c = w/Ais linked to the spatial grid spaciny and to the spatial filter scale= A. In the case of LES, characterized
by (under-resolved) finite grid spacing, a non-closed subgrid-scaleseit@r= G * 0, Fy (un) — G * 0, Fy (u) remains

on the right hand side due to the nonlinearityff). Common practice is to close (1) by an explicit model of the SGS
stresses which approximatesggs = —9,7.

CONSTRUCTION OF THE IMPLICIT SGS MODEL

As shown in [2] it is desirable to exploit the deconvolved solutiogn = G~! x iy . Since the used top-hat filter is not
fully invertible the application of any approximate inveise = G‘X,l * 4y results in an additional error term. Finally, we
replace the physical flux function by a more suitable numerical flux fundfign If the resulting cumulative numerical
truncation erroey = G 9, Fn(un) — G * 8113“1\[(@];1 * Uy ) approximates sas, the implicit SGS model contained in
the numerical discretization

ataN‘i‘G*axFN(aN) =0 2

substitutes the explicit model. Thus the construction of an implicit SGS model amounts to devise an appropriate adaptive
deconvolution operator and a suitable numerical flux function. Consistently with the framing finite-volume approach,
the top-hat filtering of the one-dimensional flux divergence in (2) returns the difference of the flux trough the cell faces
xj+1/2, While the filtered solutioniy is known at the cell centers only. Following the suggestion in [3] intended for
Essentially-Non-Oscillatory (ENO) schemes, the required reconstruction of point values of the deconvolved solution can
be determined by the interpolation polynomialg: ;.1 /2) = S N (xj—ry1) + O(RY) , where the coefficients

C;F,k,r,z contain the grid-dependend deconvolution and interpolation operator which can be computed with a rule given
by [3]. The shiftr = 0,...,(k — 1) characterises the treated stencil. The main idea of weighted ENO is the linear
combination of reconstructions of a single orde K to obtain a approximation of ord@#{ — 1 in smooth regions.

We extend this scheme by also including the computationally cheaper reconstructions af erder.., K

K k-1 k—1

ﬂﬁ(l’jil/g) = wljr(xj)pir((tjil/g) with ka,y-(xjil/Q) = Zc;fk,r,lﬂ]v(mj_r‘*'l)' (3)
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Since highest possible order of accuracy is not required, free parameters can be introduced. Theugﬁ’gdgl;l)sare
computed from a solution-dependend functigin.(z,) which is used as smoothness measure and from a set of constant
parameters; . which denote stencil-selection preferences in particular allow to adjust the truncation error [4] .

REPRODUCTION OF EXPLICIT SGS MODELS
Since the model should depend on the kind of nonlinearity, the following analysis is limited to the viscous Burgers

equationF (u) = u?/2 — 1/Re d,u, which is the relevant model for the Navier-Stokes equation. As mentioned above,
the dominating terms of the implicit SGS model are identified by comparing the modified differential equation (2) with



the exact LES equation (1). The model parameters can be adjusted in order to reproduce approved explicit SGS models.
We found a set of parameters far = 3 that matches with the standard Smagorinsky medglr = 2Csh?|0,.4|0%u up
to orderO (h?)

en = 2Cs |0,u O*uh® — écs |0,u| Osuh* + O (h°) . 4

For validation, simulations of statistically forced and decaying turbulence of the viscous Burgers equation were performed
with this implicit model. In both cases we observe a good agreement with the reference data computed with a de-aliased
spectral discretization where the Smagorinsky SGS model is added explicitly (Fig. 1).

OPTIMIZATION OF THE IMPLICIT SGS MODEL

If computations with the implicit model produce results of comparable quality as common explicit models, the benefit is in
the implicit character which removes computational overheads of explicit SGS models. Other parameters, however, may
yield much better results than those matched to explicit models. In order to identify them, one has to evaluate the implicit
model by defining a cost function for every test case. For the stochastically forced Burgers equation a suitable criterion
is the grade of agreement of the inertial range of the time-averaged energy spectrum with theoretical predictions. There
are, however, two major difficulties: First the dependency of parameters and spectra is unknown, and second, the effects
of random forcing result in an ambiguous cost function. Therefore traditional optimization strategies are not applicable.
The idea of Evolutionary Optimization (EO) adopts concepts with random components as selection, recombination and
mutation [5]. The application on the above mentioned test case shows nearly monotone convergence which slows down
after 200 generations and leads to a set of parameters that results in the effective model

en = (—0.11108 (97ud, i + dyun) + 0.66667 |0,u|02a) h* + O (h?) . (5)

Computational results for stochastically forced Burgers equation show that these model parameters give significantly
better results than parameters from other models (Fig. 1).
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Figure 1. Left: decaying turbulence: temporal evolution of total eneRjight: forced turbulence: time-averaged energy spectra

CONCLUSIONS

Subgrid-scale model and discretization of a conservation law can be merged. Systematical optimization of the presented
implicit SGS model results in an superior model, which has been successfully applied to the one-dimensional Burgers
equation. The extension of the optimization to three-dimensional Navier-Stokes equation is subject of ongoing work.
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