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Superfluid 4He may be regarded as a mixture of normal fluid and superfluid, described by the velocity
fields Vs and Vn, and the density fields ρn and ρs, respectively. The rotation of superfluid is confined to
one dimensional singularities called quantum vortices. Due to existence of these singularities, the superfluid
component is coupled dissipatively to the normal one by the so-called mutual friction force Fns, which is
proportional to the density of superfluid vortices L, and to the magnitude of counterflow Vns = Vn − Vs.
At very low velocities the flows of normal and superfluid components are laminar and the quantum vortices
form an ordered array of locally parallel lines; the whole system is described by the Hall Vinen Bakarevich
Khalatnikov (HBVK) equations. At higher velocities the superfluid laminar flow develops into a superfluid
turbulent flow in which quantum vortices form a chaotic tangle. The quasi isotropic tangle, which may be
generated under the thermal counterflow, is described by the Vinen equation. There remain outstanding
questions concerning highly anisotropic quantum turbulence, which may be produced mechanically (e.g. in
Couette flow or spin-up), and which may not be described by either HBVK equations or Vinen equation. The
theoretical difficulty in modeling anisotropic turbulence has been overcome recently be extensive numerical
simulations in which the dynamics of quantized vortices is described by Biot-Savart law. Despite such
simulation provide accurate description, they are restricted to relatively weak turbulence with low L.

In this study we propose an alternate approach: In macroscale scale we use the two-fluid model equations;
the Euler equation for the superfluid component and the Navier Stokes equation for the normal component.
These two equations are coupled by the mutual friction force Fns, which depends on the local line-length
density L. The vortex density L at given point, say p, is calculated in a small volume Ω around p, based
on the Vinen equation, which is modified to describe the evolution of line-length density of quantum tangle
with net macroscopic vorticity. The generalized equation includes the drift of the anisotropic tangle caused
by Magnus force. The volume Ω, must be enough large to contain a large number of vortex lines, but
small when compared with the integral scale of the flow. It is assumed that the normal and superfluid
velocity fields Vn,Vs, given in macroscale by Euler and Navier-Stokes equations, respectively, are constant
in microscale, across small volume Ω. The proposed approach is, to some extent, similar to the non-local
approximation (NLA), the numerical method proposed by Barenghi et al. (1997) to calculate the growth of
the quantum tangle in imposed ABC flow of normal component. According to NLA the motion of vortex
filaments is calculated using LIA, but in the superfluid velocity field, which is calculated in relatively small
number of points using Biot-Savart law. In the incompressible approximation divVn = divVs = 0, the
derived equations (after neglecting two terms in expressions for Fns and VL) add up to the following closed
system;
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where VL is the tangle drift velocity and q, |q| = q ≤ 1, the vector of tangle polarization
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. (5)



In the above α is the nondimensional coefficient of mutual friction, β depends logarithmically to the tangle
density, but in most cases remains of order of quantized circulation κ = 9.97 ∗ 10−4cm2/s, c1, c2, I0 are
geometric measures of quasi isotropic tangle (with q = 0) adopted after Schwarz (1998), corresponding,
respectively, to the average curvature of vortex lines, average curvature squared, and averaged anisotropy of
the binormal. To derive expressions for mutual friction force Fns and local line-length density L we follow the
method proposed by Lipniacki (2001) and assume that the distribution of the unit tangent to vortex lines in
the tangle is the most probable distribution which results in a given tangle polarization q. In simple words,
our assumption implies that macroscopic vorticity is absorbed into the tangle and causes its directional
polarization, which is consistent with simulation of rotating turbulence using Biot-Savart law description by
Tsubota et al. (2003). In the case of stationary rotating turbulence Eq. (4) gives the line-length density
with respect to cylinder angular velocity Ω = ωs/2 and counterflow velocity Vns in implicit form

L =
LH

(1 − q2)2
, LH = V 2

ns

(c1 I0

β c2

2

)2

, (6)

where LH is the steady-state line-length density resulting from same counterflow Vns and q = 0. Anisotropy
parameter q can be written as q = Lω/L, where Lω = ωs/κ is the line-length density associated with
rotation ωs and zero counterflow. This prediction is the satisfactory agreement with Swanson et al. (1983)
experimental data and simulations of Tsubota et al. (2003).

Equations (1-5) are supplemented by the boundary conditions for normal and superfluid velocity com-
ponents, which in the simplest case, when there is no thermally induced flow, simplify to

n · Vs|∂U = 0 , Vn|∂U = 0. (7)

Eq. (5) implies that when ∇ × Vs 6= 0, the vortex tangle (and the superfluid vorticity) moves across
the counterflow. This implies that the boundary conditions must include additional condition connected
with the rate of generation (or annihilation) of vortex lines at the wall. This condition must include some
information about surface roughness. If the wall is perfectly smooth, the vortices can slip over and, provided
that (7) is satisfied, there is no vorticity production at the wall; however, if the tangle drifts towards the
wall, the line-length may annihilate. If the boundary is not perfectly smooth, pinning leads to the elongation
of vortices, which results in a boundary production term proportional to the tangle density at the boundary.

The system of equations (1-5) was tested by applying it to the problem of formation of the shear flow
between two parallel infinite material surfaces z = 0 and z = D. We consider the case, in which for t < 0
both material surfaces remain at rest, and then at t = 0, one of them starts moving along x axis with
constant velocity V . We assumed that there is some initial density of remnant vortices L0. The following
scenario is observed. The normal component starts moving due to the viscosity forces, this introduces the
velocity difference between normal and superfluids components Vns. The counterflow Vns makes that the
line-length density grows up (Eq. 4), and the two components become coupled by the mutual friction. The
fact that superfluid velocity tends to match with normal velocity makes that ωs 6= 0, which implies the
polarization and drift of the tangle. After sufficiently long time the shear flow is formed.

There are three characteristic regimes with respect to the value of D V :
I - For large D V the characteristic time of tangle generation is shorter than the drift time, in which the
vortices can propagate across the vessel. This implies that the drift can be neglected. Moreover, until the
components are not locked together, the tangle is almost anisotropic.
II - For small D V the line generation is slow and the tangle is highly polarized. The drift term makes that
vortex lines are efficiently swept out of the region where the counterflow exists. As the result there are two
characteristic regions in the flow. In one of them the counterflow is almost zero and the quantum vortices
form an ordered array of lines, and in the second region counterflow is non-zero, but there are few vortices.
III - For intermediate D V the drift term in the modified Vinen equation is comparable with the generation
term. There are three regions; of high tangle polarization in which the components are locked together, of
intensive vortex generation, and of relatively dilute tangle, where the superfluid velocity is almost constant.
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