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PDF COMPUTATION OF TURBULENT FLOWS WITH A NEW NEAR-WALL MODEL
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Summary The modeling and computation of near-wall turbulent flows is addressed with the probability density function (PDF) method
for velocity and the turbulent frequency. A new model for viscous transport is proposed and a method of elliptic relaxation for a blending
function is applied to model the pressure-strain term. The PDF equation is solved by a Monte Carlo method and the whole approach
appears as a self-contained Lagrangian simulation using stochastic particles. For the sake of numerical example, the fully developed
channel flow is computed; results are compared with the available DNS data.

PDF modelling of the near-wall effects
From a practical point of view, a sound modeling of near-wall turbulence is of utmost importance, for the overall char-
acteristics of momentum and heat transfer are mostly controlled and determined by a relatively thin near-wall region. At
the same time the near-wall treatment in turbulent flows remains a notorious difficulty for statistical modeling. In the wall
proximity a strong inhomogeneity due to the mean shear and considerable gradients of turbulence statistics are observed.
The turbulence in this region is also highly anisotropic, with the wall-normal direction definitely distinct from others;
this effect is felt also at larger distances from the wall through the pressure field. In the near-wall region, the molecular
transport (viscosity, thermal conductivity) has to be accounted for explicitly.
The present work addresses the modeling and computation of turbulent wall-bounded flows. Approach followed here
is the stand-alone PDF method, cf. [7], which is extended to account for wall effects. This is also the continuation of
the previous work of the authors [5], [8], where the wall function approach was applied in the PDF method. The work
differs in a few aspects from the study of Dreeben and Pope [1]. First, a new model for viscous transport is proposed,
which operates with only first-order derivatives of the mean velocity field. In order to model the non-local wall effects
we implement in the PDF approach the elliptic relaxation method [2] in its efficient one-equation variant [3]. In order to
deal with numerical problems arising in the modeling of the viscous sublayer, a new integration scheme for the stochastic
differential equations is proposed.
In the Lagrangian approach the viscous effects are modelled through the Brownian motion in the equation for the stochastic
particle position and additional terms in equation for velocity increment [1]. The alternative model presented below retains
the same structure of the velocity increment equation as the model for high Reynolds numbers [7]:
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where 〈·〉 denotes the ensemble average, P is the kinematic pressure, U(t) is the velocity of a particle, defined as the
Eulerian fluid velocity U(x, t) evaluated at the particle position, i.e. U(t) = U [X (t), t]; dW and dW X denote the
increments of the Wiener process, ε is the dissipation rate of the turbulent kinetic energy k, and D = (2/3)Gkl〈ukul〉.
The tensor Aij is determined from the requirement
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∂〈Ui〉
∂xk

∂〈Uj〉
∂xk

. (2)

The LHS of the above expression has the physical interpretation: it is the dissipation rate of the kinetic energy connected
with the mean motion. The form (2) assures that in the Reynolds stress equations corresponding to the stochastic model
(1) the viscous transport term is exact.
In the vicinity of the wall the effects of kinematic damping of the wall-normal velocity component and pressure scrambling
can be modeled by a proper form of the tensor Gij . Here, the components of this tensor are computed as the interpolation
of their known near-wall form Gw

ij and a standard quasi-homogeneous model Gh
ij (eg. the basic pressure-strain model)

used far from walls: Gij = (1 − αεT )Gw
ij + αεT Gh

ij , where T = 1/〈ω〉 is the time scale, 〈ω〉 is the mean turbulent
frequency and α is the elliptic blending function to be determined from the Helmholz equation [3]:

L2∇2α − α = − 1
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(3)

with the length scale L = CL max{k3/2

ε
, Cη

ν3/4

ε1/4
}. In the Lagrangian formulation the equation for the turbulent frequency

ω is solved and ε is computed from the formula ε = k〈ω〉 + νC2

T 〈ω〉2 (see [1]).
The dissipation rate ε has a non-zero value at the wall while the kinetic energy k ∼ y2 in the wall vicinity. Hence, some
expressions present in the stochastic differential equations (1) are unbounded when discretized with the Euler scheme:
(ε/k)ui∆t ∼ 1/y for i 6= 2. For the purpose a new numerical scheme has been developed [4]. It is based on the
exponential solution of the stochastic equations (1) (details are not shown here).



PDF computation results for channel flow
Another objective of the work is to report computational results from the velocity PDF code for the case of fully developed
channel flow. Computations are done to match the numerical experiment (DNS) [6] at Re τ = 395 and 590. The statistics
(cf. Fig. 1) fit reasonably well the DNS data, although the mean velocity profile show a discrepancy in the buffer layer.
This can be a consequence of the simple one-equation elliptic blending model used. Figure 2 presents probability density
functions of the fluctuating streamwise velocity computed at different distances from the wall. As it is seen, even the
definitely non-Gaussian behavior of the probability density functions near the wall can be reproduced correctly by the
PDF method.
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Figure 1. a) Mean velocity profiles in the turbulent channel flow at Reτ = 590 and Reτ = 395 (data sets shifted upward by 10); PDF
computations: lines, DNS results[6]: symbols. b) the Reynolds stresses at Reτ = 395, PDF computations ( ); DNS data: 〈u2〉 •,
〈v2〉 N, 〈w2〉 �, 〈uv〉 H.
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Figure 2. PDFs of the streamwise velocity fluctuations at Reτ = 395. a) PDF computations at y+ = 5 ( ) and y+ = 10 ( ).
b) PDF computations at y+ = 20 ( ) and y+ = 80 ( ). DNS: symbols.

Conclusions
The main thrust of the work has been the development of a complete near-wall stochastic model with a new proposal for
viscous transport. Unlike the previous model [1] no second order derivatives need to be computed. Moreover, the La-
grangian equation for velocity increment retains the same simple structure as for the high-Re case. The elliptic relaxation
approach has been applied in the Lagrangian PDF setting in its simple and computationally efficient variant [3] with only
one additional elliptic equation solved. When supplemented with a suitable scalar transport equation, the approach pre-
sented here can readily be applied to the case of near-wall turbulence with heat transfer to model the thermal fluctuations
in the immediate vicinity of the wall.
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