RELATION BETWEEN MIXING EFFICIENCY AND GEOMETRICAL PROPERTY OF STABLE
MANIFOLDS

Mitsuaki Funakoshi*, Hiroshi Kawazoe*
*Department of Applied Analysis & Complex Dynamical Systems, Graduate School of Informatics, Kyoto
University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, JAPAN

Summary We examine the mixing of fluids associated with the chaotic motion of fluid particles due to the time-periodic flow between
two eccentric cylinders caused by the time-periodic slow rotation of these cylinders. We examine the relation between the geomtrical
property of the stable manifold of the unstable periodic points of the Poincaré map and the efficiency of the mixing. We find that the
maximum stretching rate of fluid elements in a short time is large in the region where the density of the stable manifold is high, and that
this stretching rate is small in the region where the curvature of this manifold is large. We also find that small blobs initially located at
the region of high density of the stable manifold are mixed well in a short time.

INTRODUCTION

The motion of fluid particles in a flow of an incompressible fluid can be chaotic even if the velocity fieldof the fluid is
steady or time-periodic. The efficientmixing of fluids caused by this chaotic motion is often called the chaotic mixing.
There has been many researches on the chaotic motion of fluid particles (Lagrangian chaos) and the chaotic mixing due
to two-dimensional time-periodic flows or three-dimensional steady flows since 1980°’s [1-3].

In the present study, we examine the chaotic mixing due to the time-periodic flow between two eccentric cylinders caused
by the time-periodic slow rotation of these cylinders. The main purpose of the present study is to examine what infor-
mation on the mixing efficiency is obtained from the geometrical property of the stable and unstable manifolds of the
unstable periodic points of the Poincaré map which maps the location of a fluid particle onto its location after one period
of the flow.

TIME-PERIODIC FLOW BETWEEN TWO ECCENTRIC CYLINDERS

When two eccentric cylinders of sufficiently long length rotate at small angular velocities, we can assume that the flow
of an incompressible fluid between these cylinders caused by this rotation is a two-dimensional Stokes flow on the (x, y)
plane. Therefore, if we introduce streamfunction ¢ satisfying v = 9v /90y and v = —9dv/0x, where (u,v) is the (z,y)
component of fluid velocity u, then ¢ satisfies

A2 =0, (1)

and non-ship condition on the walls of the cylinders, where A denotes the Laplacian operator. The solution of this
differential equation can be written in the following form :

¥ = Qi(t) fi(x) + Qo(t) fo (), (2)

where f;(x) and f,(x) are certain functions of spatial coordinate «, and ;(¢) and €,(t) are angular velocities of inner
and outer cylinders of radii R; and R,, respectively. Here ¢ is the time. It is assumed that the motion of the cylinders
is time-periodic and that the outer cylinder alone rotates firstby angle «T,, then the inner one alone by angle 2775,
and finallythe outer one alone by angle 7T, in one period 7. The parameters of this problem are T}, T, radius ratio
a = R;/R,, and the eccentricity e = ¢/(R, — R;). Here ¢ is the distance between the centers of the cylinders, and then
e ranges from 0 to 1.

When both ©;(¢) and §2,(t) are periodic functions of period T', ¢) is also a time-periodic function. The time evolution of
the location (z,y) = (X(¢), Y (¢)) of afluid particle is governed by

AX _ QY1) Y u(X, i)
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POINCARE MAP AND POINCARE PLOT

Since ) is time-periodic with period T', we can definea two-dimensional area-preserving map M that maps X (¢) =
(X(t),Y(t)) onto X (¢t + T), called the Poincaré map. Furthermore, by plotting the values of X (nT) = M™X(0)
(n=0,1,2,---) for a few initial positions X (0) of fluid particles, we obtain the Poincaré plot.

Since Poincaré map M is area-preserving, the periodic points (including fixed points) of map M are either hyperbolic
(saddle type) or elliptic (center type) depending on their eigenvalues. It is commonly observed in the Poincaré plots that
if X (0) is sufficientlyclose to one of the p elliptic periodic points of period p, X (nT') are on one of the closed curves
encircling these points for all n. The region around elliptic periodic points where X (nT") of each fluid particle moves
regularly on the curves encircling these points is called the regular region or island region.



Moreover, since (3) is a non-antonomous conservative system with respect to two variables, it is possible that this equation
has the chaotic solution. Furtheremore, the fluid region between the cylinders is divided into the chaotic region in which
each fluid particle moves chaotically and the regular region. The fluid particle starting from the regular (chaotic) region
cannot enter the chaotic (regular) region. Therefore, it is better for the efficientmixing to have smaller regular region.
Many unstable hyperbolic periodic points of map M are usually imbedded in the chaotic region. Each unstable periodic
point has its stable and unstable manifolds. Any fluid particle starting from a location on the stable (unstable) manifold
approaches this periodic point as ¢ — oo(—00).

GEOMTRICAL PROPERTY OF STABLE MANIFOLDS

In the present study, we examine only the case in which almost all the fluid region is the chaotic region. Therefore, the
efficientmixing of fluids after many periods is generally expected. However, in the mixing of fluids at the industries, the
efficiencyof mixing in a relatively small time is also important. Therefore, it may be useful if we can obtain information
on this efficiencyfrom the geomtrical property of the stable manifolds of the unstable periodic points of Poincaré map M.
Examination of this problem is the main purpose of the present study.

Fig.1 Stable manifolds of unstable fixedpoints denoted by squares. « = 0.3, = 0.4. (a) T, = 1.0, T; = 6.0, (b)
T, =0.5,T; = 3.0.

Figure 1 shows examples of parts of the stable manifolds of unstable fixed points. For the parameters of Fig.1, almost
all the fluid region is the chaotic region. Therefore, there is no recognizable difference between the Poincaré plots for
the parameters of Figs.1 (a) and (b). Although stable manifolds are expected to cover almost all the fluid regions, the
manifolds in Fig.1 obtained by inversely mapping for finite times of small line elements directing the stable direction
from the fixedpoints are considerably localized. We findthat the density of the manifolds can be closely related to the
maximum stretching rate of line elements in a relatively small time. That is, this stretching rate is large at the location
where this density is high. From the computation of the evolution of small blobs, we obtain the result that the blob starting
from the high-density region is mixed well within a relatively small time, whereas the mixing of the blob starting from the
low-density region is bad in a relatively small time, although this blob is also expected to be mixed well after a long time.
We also findthat the elongation of a line element is suppressed at the location of large curvature of the stable manifold
because the direction of the maximum stretching rate at this location in one period is not consistent with the corresponding
direction at the points of relatively small curvature on the manifold. There were a few studies on the curvature of material
lines in chaotic flows [4-5]. The relation between the results of these studies and the present study also will be discussed.

CONCLUSIONS

The relation between the geomtrical property of the stable manifold of the unstable periodic points of the Poincaré map
and the efficiencyof the mixing is examined. In conclusion, we findthat if a small fluid blob has to be mixed well with
a surrounding fluid in a relatively short time, it should be located at the region where the density of the stable manifold
is high, and should not be located at the points from which fluid particles move to the region where the curvature of the
manifold is high after a short time.
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