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Abstract

We determine the Hamiltonian dynamics in the Lagrangian fluid description describing a massless
filament of vorticity w = curlu supported along a space curve x = R(a,t) that moves without
slipping in the incompressible flow induced by its own helicity.

Singular Lagrangian vortex filament solutions induced by the helicity

The Lagrange-to-Euler map for a vorticity filament is, w(x,t) = [ }7 R;(a,t)6(x—R(a,t))d’a, with J =
det(OR/0a) , and its helicity is,
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as obtained by using the Biot-Savart Law for vorticity filaments,
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Here d/ds’' = w(py(a’)-0/0a’ is the derivative along the filament in the primed Lagrangian coordinates
and the vectors R and Q denote spatial positions either on the same, or different filaments.

The Lagrangian filament dynamics generated by the helicity H in equation (1) may be computed
using the Rasetti-Regge Dirac bracket (RRDB) {-, -} derived in [6]. See also [3, 4] for additional
discussions and reviews of the RRDB. Hence, the induced Lagrangian filament velocity is found to be,
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We apply the local induction approximation (LIA) to the integral in this expression by following the
Arms-Hammer procedure [1] as explained, for example, in [5]. Hence, we find the following approximate
equation, in which the LIA logarithmic cutoff constant is denoted as ¢ = log(L /o),
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with projection operator P = —t x tx, where £ = R,/|R,| is the tangent vector. Equation (3) gives
the LTA dynamics of vorticity filament solutions on the space curve x = R(s, ) obtained by using the
helicity (1) as the Hamiltonian H in the RRDB. When the parameter s is transformed into arclength
along the curve, by d¢ = |R;|ds, so that J; = |Rs|0;, equation (3) may be put into “intrinsic” form,

R = = (24 b
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Here t, A, b are the Serret-Frenet unit vectors for the space curve, and 7 and x are torsion and curvature,
respectively. We define & = k|R,|? and &’ = di/dl. Note that R, - Ry = —R - Ry = (¢ /47m) &'k # 0.
Hence, equation (4) allows self stretching by an isolated filament with curvature, so that |Rs|? does
not remain constant, even in the LTA. We compare this with the da Rios-Betchov equation, [3, 7, 8]

R(s,t) = (1/|Rs]?) (Rs x t5) = k.
This is generated by RRDB with Hamiltonian Hypp = [ |Rs|ds and it does not allow self stretching.

Outlook We have determined the Hamiltonian dynamics for the singular solutions generated by
the helicity invariant of the divergenceless vorticity vector field. Conservation laws and other nat-
ural directions remain to be explored. For example, one should investigate whether the Hasimoto
transformation [2] for Kelvin-wave solitons on vortex filaments also leads to interesting phenomena in
the present situation. In particular, applying the Hasimoto transformation to the intrinsic equation
(4) for the Hamiltonian motion of vortex filaments induced by the helicity (1) leads to yet another
generalization of the nonlinear Schrodinger equation which may have interesting dynamics.
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