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Summary Using methods from bifurcation theory, we find all possible instantaneous streamline patterns in the wake of
a cylinder at Reynolds numbers close to the onset of vortex shedding and close to the cylinder. The analysis indicates
that two different regimes are to be expected. Using numerical simulations, we verify the existence of these regimes.

The basic features of the flow around a circular cylinder of diam-
eter D are well known. For low values of the Reynolds number
Re = UD/v the flow is attached to the cylinder. At Re ~ 5 the
flow separates, and two counter-rotating steady vortices are cre-
ated behind the cylinder. At Re ~ 50 the steady flow becomes
unstable, and the vortices are shed periodically from the cylinder,
resulting in the celebrated von Kdrman vortex street. The transi-
tion to periodicity is a Hopf bifurcation, see e.g. [6]. For higher
values of Re the flow becomes three-dimensional and turbulent.

The purpose of the present paper is to analyze the transition from
steady flow to periodic flow on the basis of the streamline pat-
terns. An attempt of such an analysis on the basis of numerous
visualization experiments was performed by Perry et al. [S]. The
result is shown in figure 1. The basic mechanism in the creation
of new vortices is the merging of two dividing streamlines at the
cylinder surface, as shown in the transition between panel (d) and
(e) and again between (h) and (a). In this process, an attached
vortex and a free stagnation point are created.

In the present paper we consider the equations for the instan-
taneous streamlines at time #, X = v(X,1,Re), as a dynamical
system, depending on a parameter Re, and, in the unsteady case,
the time fy. For certain values of the parameters the streamline
pattern may be degenerate or structurally unstable, and arbitrarily
small changes in the parameters give rise to qualitative changes
in the streamline patterns. Using bifurcation theory, classification
of the possible patterns close to a degenerate configuration may
be obtained. For the present case, the flow close to a fixed wall
with no-slip boundary conditions, the basic theory is established
in [1] and [4]. Applications of this approach to the analysis of
numerical simulations are given in e.g. [3].

Taking the flow at the creation at Re ~ 5 of the two steady vor-
tices as the degenerate configuration from which we perform the
bifurcation analysis, we can prove the following

Theorem Any velocity field which is a perturbation of the field at
the creation of two symmetric vortices is locally equivalent to a
member of the three-parameter family of velocity fields generated
from the normal form streamfunction

Figure 1: Instantaneous streamline pattern during a
shedding cycle proposed by Perry et al. [5].

Figure 2: Bifurcation diagram. A slice in the pa-
rameter space is partitioned into regimes with differ-
ent streamline patterns. In each region, the pattern
is sketched. The horizontal lines correspond to the
cylinder wall.
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Here x denotes a coordinate along the cylinder surface, y is a coordinate orthogonal to the surface, and co»,c12,c03 are

free parameters.

The theorem is proved with methods from normal form theory. For proofs of similar theorems, see e.g. [2, 4]. The analysis
of the normal form streamfunction results in a three-dimensional bifurcation diagram in the cg 2, ¢1 2, ¢o 3 parameter space.



An interesting two-dimensional slice is shown in figure 2. The space is partitioned into regions A, A’, ... with different
streamline topologies. The regions are bounded by bifurcation curves, shown heavy. The curve [ is a global bifurcation
curve. Here the streamlines has the topology of the steady vortex pair, but possibly with the symmetry broken.

To connect this result with the vortex shedding, we assume that

the transition to periodic flow occurs at a Reynolds number so N (\’*\_Q/\X . @Tﬁg\ .
close to the creation of the steady vortices, that the flow patterns — o E——
can be considered perturbations of the degenerate flow, and hence

must be contained in the bifucation diagram. With this assump- ' ﬁ®—\ R G U
tion, we can follow the development of the topology of the wake - -
in the diagram as Reis increased. The steady state corresponds to

the grey point on the global bifurcation curve 1. As the flow be-  Figure 3: Numerical simulations for Re = 45, right
comes periodic, the temporal development of the streamfunction  after the Hopf bifurcation. The panels show instan-
must be represented by a closed curve in the bifurcation diagram.  taneous streamline patterns at different times during
Right after the bifurcation the amplitude is small, and is repre-  the shedding cycle.

sented by the small ellipse in figure 2. Hence the theory predicts

that right after the Hopf bifurcation, two different structurally stable streamline patters will prevail, namely A and its mir-
ror image A’. At exactly two time instants during the cycle, the topology of the steady vortices will exist, as the bifurcation
curve [ is crossed.

Increasing Re, it is expected that the amplitude of the limit cycle
will grow, resulting in a larger closed orbit in the bifurcation dia- \ &/‘ . m
gram. Hence, there is the possibility, that beyond a certain critical
Re, further bifurcation curves can be crossed, as indicated by the

large ellipse in figure 2. 4@-\/ ; @
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The analysis above is of a purely qualitative nature, and relies — ==

only on the existence of a streamfunction for the flow. Hence, one

cannot on this basis predict actual Reynolds numbers where tran- __Cg\/ . v_@/\

sitions between different sequences occur. We have verified the
scenarios by numerical simulations using a finite volume code.

The code finds the Hopf bifurcation at Re = 43, in reasonable | _C_f)/\_/ ; ’Q/\
agreement with experiments. At Re = 45 a sequence of patterns I

corresponding to the small ellipsis in figure 2 is obtained. This

sequence persists only until Re ~ 45.8, where the limit cycle in-

tersects the bifurcation curves II and II’, and the streamline pat-  * —_{ﬁ\/ ¥ '_@_/\
terns B and B’ appear during the cycle. No further changes are

observed up to Re = 200.
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Note, that the sequence in figure 1 is not obtained. It is a perfectly —6\/

legitimate sequence, and Hartnack [4] shows that the sequence is
in fact the simplest possible which can account for creation and )
destruction of attached vortices. However, it does not include the Figure 4: As figure 3, but for Re = 100.

topology of the steady vortices, and the present analysis shows that this cannot be avoided generically.

The present qualitative analysis does not depend on the specific shape of the fixed body. For more general shapes such
as ellipses the same bifurcation diagram will be relevant, as long as the streamline pattern of the steady vortex pair is of
relevance.
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