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Summary Lagrangian stirring in a thermally driven rotating annulus is investigated numerically. The stirring is quantified using
Eulerian symmetry measures, as well as more commonly used Lagrangian measures. The ability of the measures to identify transport
barriers and regions of well and poorly stirred flow is investigated, and space and time averages of the Eulerian symmetry measures are
compared to those of the Lagrangian measures for various flow regimes.

Introduction

Tracer transport in fluid flows, particularly atmospheric fluid flows, is commonly studied using analysed wind (velocity),
temperature and pressure fields. Tracer trajectories are integrated forward in time, using the velocities defined on a grid,
and interpolating them to the required point at each step of the integration. This technique has provided many useful
insights, particularly in the stratosphere, where the Lagrangian motion can be almost entirely determined by the large
scale wind structure. However, integrating many such trajectories is computationally expensive and is less accurate in
other areas of the atmosphere, particularly where the wind fields are known only on a sparse grid. It is therefore of benefit
to discover connections between Eulerian velocity fields and the Lagrangian structure produced by such fields without
the need to carry out detailed integrations of tracer transport. Additionally, such connections are arguably of interest at a
fundamental level, and may reasonably be expected to find applications in many areas of fluid mechanics.

Recently [1] discovered that integrated values of a suitably chosen Eulerian measure of the local three dimensionality
of the phase space were strongly correlated with the extent of stirring in the flow, as measured by an effective diffusion
coefficient. An objective of our work is to evaluate Eulerian symmetry measures for thermally driven rotating annulus
flows and to compare them with Lagrangian measures of stirring, such as finite time and finite scale Lyapunov exponents.

The Flow and Methods

The flow considered is that of a viscous, thermally conducting fluid in a differentially heated rotating annulus, with rigid
sidewalls and lower endwall, and a stress-free upper endwall. The flow is held to be axisymmetric but the sidewall heating
is time dependent. The two numerical codes used are a Navier Stokes field model, and a particle path tracking code similar
to that used by [1]. Because the Navier Stokes model is axisymmetric, the velocity fields produced by it are constrained
to be two dimensional.

The velocity field in the*-z plane,(u, w), is used to find tracer trajectoriesrirandz using the particle path tracking code,

which integrates the equatiofs 2) = (u, w) for a predetermined starting position for each tracer. The integration is done
using a 2nd order Runge-Kutta routine in either direction. For each integration step, the velocity fields are interpolated
to the position of the tracer, and to the intermediate point required for the Runge-Kutta integration, from the nearest grid
points using a bicubic interpolation in space and a linear interpolation in time.

In the absence of time dependence in the temperature forcing, the flow does not produce chaotic tracer trajectories, since
the number of phase space dimensions is two. Introducing the time dependence increases the number of phase space
dimensions to three (two space and time), so it is possible to observe chaotic tracer trajectories and hence enhanced
stirring.

A motivation for seeking Eulerian measures for enhanced stirring comes from a consideration of the Hamiltonian formu-
lation of the governing equations of motion. For example, a two dimensional incompressible flow can be written in terms
of a streamfunction, which can be considered to play the role of the Hamiltonian. If the streamfunction is time indepen-
dent then, the flow is integrable, whereas if the streamfunction is time dependent then a fﬂhw't'nsfying% =0is

required for integrability. If it can be Writte%% = ¢(V) whereV is the velocity field, ther provides a measure of de-

parture from dynamical symmetry. Similarly, the time dependence of the streamfunction provides a measure of departure
from geometrical symmetry. For a time dependent two dimensional flow field, then, regions of the flo r

is zero will give rise to integrable trajectories. Physically, tracer particles in regions oﬁ)zmré;% will be constrained

to two dimensional surfaces, and will therefore not be well mixed in these regions. The value of these quantities may
therefore be expected to provide some idea of how well mixed tracers advected due to the flow will become in a given
region, since, for lower values, trajectories will be more closely constrained to two dimensional surfaces.

While studying the axisymmetric annulus flows, some Lagrangian measures of mixing have been identified, mainly to
provide a ‘control parameter’ to which to compare the Eulerian symmetry measures. However, it is interesting to inves-
tigate how well these Lagrangian measures themselves can quantify how well mixed the flow is in different regions, for
both the axisymmetric and the non-axisymmetric cases.

Results

Box counting dimensions, finite time Lyapunov exponents and finite scale Lyapunov exponents were calculated for various
flow regimes, with a rotation rate afrad s—! and a mean temperature difference between the inner and outer wal, of



and various forcing amplitudes and frequencies. These Lagrangian measures were found to predict poorly mixed regions,
and transport barriers in particular, rather well. A contour plot of the finite scale Lyapunov expgraemnt the Poincaré

section for the same region of the flow, are shown in figure 1. The forcing amplitude and frequehbyaare27r /100 s~ !
respectively. The exponent is calculated by taking two tracers a distéftapart, and integrating their trajectories until

they have reached a separatiefr) = Rz(0). The exponent is given by(r, z) = I In R, wherer is the time at which

the separation reachéd&:(0) and(r, z) is the initial position of one of the tracers. The valuefdtised in the figure is

1000.

Figure 1. Comparason of Poincaré section and contour plot of logarithms of the valumaf*, for a region of the flow

This lyapunov exponent was calculated for eight different flow regimes, all with forcing frequenog s —* and various
amplitudes. The exponent was averaged over the phase space for each flow regime, to give an averagé&hialis

compared with the corresponding average value of the geometrical symmetry m%%:\suﬂeich measures the extent of
the time dependence of the Hamiltonian (the streamfunction) governing the flow. A log-log plot of the two measures is

shown in figure 2 and there is a slope of about 0.24, suggesting tha{’ %—‘f . The geometrical symmetry measure

thus seems to be able to predict the extent of the mixing in a given flow as a whole, when the amplitude of the forcing is
varied with constant frequency of forcing.

Figure 2. Correlation between logarithms of geometrical symmetry and finite scale Lyapunov exponent

Conclusions

The Lagrangian measures accurately predict the locations of transport barriers.The Eulerian symmetry measures seem to
provide a way of efficiently predicting the broader mixing characteristics of a flow, although they are not sufficiently sharp

to predict the exact locations of transport barriers.

The next part of this study will be to look at fully three dimensional thermally driven rotating annulus flows, which will
provide an opportunity to evaluate the methods in the context of a more dynamically consistent flow regime. It will also

be possible then to compare the results with laboratory experiments.
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