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MIXING IS AN AGGREGATION PROCESS
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Summary Experiments show how a stirred scalar mixture relaxes towards uniformity through an aggregation process. The elementary
bricks are stretched sheets whose rates of diffusive smoothing and coalescence build up the overall mixture concentration distribution.
The cases studied in particular include mixtures in two and three dimensions, with different stirring protocols and Reynolds numbers
which all lead to a unique family of concentration distributions stable by self-convolution, the signature of the aggregation mechanism
from which they originate.

INTRODUCTION AND OBSERVATIONS

A mixture is a transient state between the initial segregation of the constituents, and their ultimate homogeneity. The
overall mixing process of a drop of dyed fluid in a stirred medium involves two phenomena : a process of dispersion of
the drop in the diluting medium by which the phases interpenetrate, and a process of interaction between the dispersed
elements from which homogeneity arises. It is shown here that the mixture’s evolution is directed by a random aggregation
process essentially independent of the detailed stirring mechanism. In a first experiment (Fig.1a), a turbulent jet of water
plus dye discharge in a square, transparent, long duct atRe ' 104. A second experiment consists in stirring a blob of dye
with a rod in a thin layer of very viscous fluid atRe ' 10−1, by a two-dimensional, quasi-periodic protocol (Fig. 1b).

a) b)

Figure 1. a) Successive mixing states of a dye discharging from a jet in a square duct. b) Mixture realized by stirring a dye in a viscous
two-dimensional layer by a periodic protocol.

In both cases, the distributionP (C) presents a skewed, bell shape which gets narrower around〈C〉, very well described
by a family of one parameter distributions, namely Gamma distributions

P (X = C/〈C〉) =
nn

Γ(n)
Xn−1 e−nX . (1)

The fairness of the fit holds for the whole concentration range, down to quite low probability levels, and accounts for
the deformation ofP (C) through the single parametern which depends on the protocol: it increases like the power
5/2 of time (or downstream location) in the channel case, and like the power 3/2 of the number of stirring cycles in the
two-dimensional case (Fig.2).

STRETCHING ENHANCED DIFFUSION AND MIXTURE COMPOSITION

Stirring motions progressively convert a compact blob in a set of sheets of increasing surface and decreasing thickness [1].
Let s(t) be the distance between two material particles in the directionz perpendicular to a sheet, andσ(t) = ∂lns(t)/∂t
its rate of compression. The concentration profilec(z, t) across the sheet results from an equilibrium between stretching
induced compression and diffusive spreading. The thickness reduction process goes on untilσ(t) is balanced by the
rate of diffusive spreadingD/s(t)2. This defines the mixing timets of the sheet. If for instance the sheet thickness is
s(t) = s0(1 + γt)−β whereγ is an elongation rate, thenγts ∼ (γs2

0/D)
1

2β+1 .
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Figure 2. a) Downstream evolution of the concentration distributionP (C) as the dye progresses along the duct as shown on Fig. 1 and
fitting parametern of the distributions of Eq. 1 as a function of the downstream distance(x− d)/L. ◦ : Re = 104, • : Re = 5× 103.
b) Concentration distributions for the two-dimensional protocol as a function of the number of stirring cycles, and fitting parametern.
Re ' 10−1.

Beyond this characteristic time, the maximal concentration in the sheetc(0, t) which is such thatc(0, t)(Dt)1/2/s(t) is, by
mass conservation, constant, decays asc(0, t) ∼ (γt)−β−1/2. In incompressible two-dimensional flows where the length
of material lines grow likeγt [2], the mean transverse thickness of the scalar sheet decrease ass(t) = s0/

√
1 + (γt)2,

providingc(0, t) ∼ (t/ts)−3/2 for t > ts, with ts ∼ 1
γ Pe1/3, wherePe = γs2

0/D is a Péclet number. If material surfaces

in three dimensions grow like(γt)2, then [3],s(t) = s0/(1 + (γt)2), providingc(0, t) ∼ (t/ts)−5/2 for t > ts, with
ts ∼ 1

γ Pe1/5. These timescales are the relevant mixing times as soon as the inverse of the elongation rateγ−1 is smaller

than the diffusive time of the sheet constructed on its initial sizes2
0/D, that is forPe � 1.

However, the sheets interact as they move in the flow so that their diffusive boundaries interpenetrate to give rise to
new sheets whose concentration profile is theadditionof the original ones owing to the linearity of the diffusion process.
Because of the irregular stirring motions, the addition of the concentration levels is made at random among those available
in the populationP (C) at timet which therefore evolves by self-convolution as [4]

∂P

∂t
= − ∂

∂C

(〈
dc

dt

〉
P

)
+

dn

dt

(
−P + P⊗(1+1/n)

)
, (2)

whose asymptotic solution is a Gamma distribution of ordern. The piling-up of the concentration levels by coales-
cence contributes, through the second term of Eq. 2, to the increase of the average concentration by a factor given by
exp{

∫
dn/n} = n and is balanced by the damping factor whenn = 1/c(0, t). Stretching motions in 3D form sheets

whose maximal concentrationc(0, t) decays liket−5/2 whereas 2D motions form filaments whose maximal concentration
decays liket−3/2. The coalescence mechanism giving rise to Eq. (1), will therefore make the average concentration〈C〉
constant if

n ∼ t−3/2 in 2D, and n ∼ t−5/2 in 3D, (3)

as expected from Fig. 2. The mechanism building-up the concentration distributionP (C) solely relies onrandom
additionsof concentration levels, independently of therateat which these additions are made.

CONCLUSIONS

Composition fields obtained at a very low Reynolds number are very similar to those obtained at much larger Reynolds
number. The reason is that the evolution mechanism is the same. The motion of the rod in the two-dimensional vis-
cous fluid plays the role of the random stirring motions in higher Reynolds number flows. Their role is to ensure the
independence –in the statistical sense of Eq. (2)– of the concentration levels additions giving rise to the self-convolutive
construction of the mixture composition; a particularly simple paradigm for the impact of turbulence on mixing.
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