INTERMITTENT DISTRIBUTION OF HEAVY INERTIAL PARTICLESIN TURBULENT FLOWS
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Summary The phenomenon of preferential concentration of inertial particles is studied by following lagrangian trajectories. Elementary
properties of the coarse-grained distribution of heavy particles in simple turbulent flows are investigated by direct numerical simulations.
In the small Stokes number case, we compute the coarse-grained particle distribution, 72,,, and we demonstrate that the second moment
(m2) behaves as an approximate power law : (72) ~ r. The dependence of the exponent « as a function of the Reynolds and of
the Stokes number is studied in the small Stokes number limit. Our results show a strong dependence of the level of fluctuation of the
particle distribution as a function of the Reynolds number.

INTRODUCTION

Inertial particles advected by a turbulent flow are known to have very inhomogeneous distributions [1]. In clouds, the
clustering of water droplets is known to have several important consequences [2],in particular in enhancing the collision
rate between droplets, thus dramatically accelerating the formation of rain [3]. The origin of this effect is due to parti-
cle inertia : particles are advected by an effective velocity field v, which is compressible (V - v # 0) even when the
surrounding fluid motion, u is incompressible (V - u = 0). This effect is often refered to as preferential concentration.
In the limit of weak particle concentration, the density of particles, n, obeys :
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In an incompressible turbulent flow, with a Kolmogorov scale 7, the divergence of the particles’ velocity field v acts as a
source term of density fluctuations at scales ~ 7 [1]. As fluid elements get squashed by turbulence, the particle distribution
reaches finer and finer scales, down to a cutoff length scale, r;4, determined by the diffusive process and/or by the size
of the inertial particles. The clustering of particles is characterized here by the coarse-grained density of particles over a
volume of size r, m,.. This quantity can be expressed in terms of the properties of the trajectories of particles in the flow,
conditioned by the stretching occuring along the trajectory [1, 3].

Using direct numerical simulations (DNS) of turbulent flows, we compute the properties of the second moment of the
fluctuating quantity 7, : (n2) and its dependence as a function of the parameters in the problems, such as the Reynolds
number, Ry, the Stokes number, St, and size, r. A power law dependence is found numerically : (m2) oc r®. In the
limited range (R, < 130) studied here, a strong variation of the exponent is found.

LAGRANGIAN APPROACH

Inertial particles of density po, of radius a, evolve in a fluid of density p and of viscosity v subject to an incompressible
turbulent motion, described by an eulerian velocity field u(x, t). In the low concentration case, particles can be considered
as purely passive. Introducing 8 = 3p/(p + 2po) and the Stokes time, 7, = a?/3v3, the velocity v of inertial particles
satisfies [2] : p p
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We restrict ourselves here to the case where the time 7 is short compared to the Kolmogorov time scale, i = (w?)!/2, so
the Stokes number, St = 7, /7 is small. The velocity is well approximatedby v = u— Tsfi—;‘, where Cfi—‘t‘ is the lagrangian
derivative of the velocity field : 92 = g,u + (u- V)u. The velocity field v is compressible: V-v = -7,V - (u- V)u =
—1str(m?), where m is the velocity derivative tensor : m;; = (du;/dz;). The source of concentration fluctuations is
related to the compressibility of the velocity field v; it acts therefore most strongly at the Kolmogorov size, 5 [1, 3]. To
estimate the coarse-grained distribution of particles over a size r, 7., at location x and time ¢, one has to trace back in
time to the previous time —t,., and to the location x,., such that the trajectory starting at —t¢,., and location x,. ends up at
t = 0 at location x. The flow maps a small volume of characteristic size r at ¢ = 0 to a volume whose largest scale is 7 at
time ¢ = —t,.. The intuitive picture is that particle concentration fluctuations accumulate at a scale r as long as it takes to
expand the volume to a size ~ 7 as the trajectory evolves backwards in time. The coarse-grained particle concentration is

[1]:

0
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The statistical weight associated with each trajectory is o« 1/n. As a consequence, the second moment of the distribution
of @, is simply (P2) g = {ng exp (75 fftr tr(mz)(t’)dt'))Lag, where (...) & ({...)Lag) refers to eulerian average (average
over a set of trajectories).

In the small Stokes number limit, the difference |v — u| ~ St|u| << |u] is small. We thus simply follow the compression
along lagrangian trajectories of the flow to obtain an estimate of the quantity (n2).



20 T T |||||| T T ||||||| T T T TTTTT 0.6 T T T T T T T T T T T T T T
R,=105 r , -

10— — i

5r _

g | |

2r _

1 __
005 1 1 11111 I| 1 1 11111 I| 1 1 111111 R

1 10 100 1000 0.0 0.1 0.2 0.3
n/r; St=0.039xn,n=1,..,7 St

Figure 1. The variance of the concentration fluctuation (m2) as a function of r, at Ry = 105 and for St = n x 0.039 (1a), and the
exponent « as a function of St for several values of Ry (1b).

NUMERICAL METHODS

A turbulent velocity field is generated by standard DNS methods [4]. At a given time, a set of IV; lagrangian trajectories
is released. Along with the locations and velocities of the particles, we follow the tensor W describing the deformation of
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small (infinitesimal) fluid elements, as well as its inverse : Wi mip Wi and —ii- = —W. 1m;,. The compression
dt J dt ik J

between time —t,. and 0 of a fluid parcel of size 5 to a small scale » implies that the norm of W —! grows by a factor
(n/r) during this lapse of time. By monitoring the tensor W 1, we are therefore able to determine the final location x
of a trajectory, starting at xo, such that the compression of a fluid element between the initial ¢ = 0 and the final time
t = t, is equal to a given value (n/r). This allows us to determine the quantities X, and 7,. without having to integrate
the equation of motion for the fluid particles backwards in time.

The number of grid points was varied in the range 32 —256°. The product k,,,.7, Where k. is the highest wavenumber
represented in the simulation is maintained in the range 1.4 < knq..n < 2, thus assuring that the small scales are
adequately resolved. The Reynolds number is varied in the range 20 < R, < 130. Lagrangian trajectories are followed
using the algorithm developped in the tensor W and W ! are integrated according to the method introduced in [5].

SCALE DEPENDENCE OF THE COARSE-GRAINED DENSITY FLUCTUATION

Fig.1a shows a typical example of the r-dependence of 2 as a function of r, at Ry = 105, and at a value of the Stokes
number St = 0.0390 x n, n = 1, ..., 7. Away from the values of r close to n/r = 1, (R2) behaves almost as a power law,
as revealed by the straight lines seen on the log-log plot. The curves however show a slight convexity.

The exponent can be computed directly from the numerical data by finite differences. Our numerical results demonstrate
that a power law dependence is a very good approximation of the experimental data. The exponent was systematically
measured at a value of n/r = 200. Fig.1b shows the exponents as a function of the Stokes numbers for several values of
the Reynolds numbers. Remarkably, it is found that the exponent a: grows strongly when the Reynolds number increases.

DISCUSSION

We have analysed the phenomenon of preferential concentrations by following, along individual particle trajectories, the
quantity ¢r(m?). Our results show that the effect of preferential concentration is strongly dependent on the properties of
the turbulence. The very small scale, intermittent structures of turbulence, such as vortex tubes, thus have a direct and
important impact on the distribution of heavy particles in turbulent flows.

References

[1] Balkovsky E.,Falkovich G., Fouxon A., Phys. Rev. Lett. 86, 2790, 2001.

[2] Shaw, R.A., Annu. Rev. Fluid Mech. 35, 183, 2003.

[3] Fakovich G., Fouxon A., Stepanov M., Nature 419, 151, 2002.

[4] Pumir A., Phys. Fluids, 6, 2071, 1994.

[5] Yeung PK., Pope S., J. Comp. Phys. 79, 373, 1988 and Girimaji S.,Pope S., J. Fluid Mech. 220, 427, 1990.



