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GEOMETRIC FEATURES OF HIGH-SCHMIDT NUMBER SCALAR MIXING
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Summary The mixing of passive scalars of decreasing diffusivity, advected in each case by the same three-dimensional Navier-
Stokes turbulence, is studied. It becomes more isotropic with decreasing diffusivity. The local flow in the vicinity of steepest negative
and positive scalar gradients are in general different, and its behavior is studied for various values of the scalar diffusivity. Mixing
approaches monofractal properties with diminishing diffusivity.

MOTIVATION AND NUMERICAL MODEL

Turbulent mixing of dyes or macromolecular substances can be understood by analyzing how these scalar substances are
advected and diffused in a fluid medium. For small concentrations, the admixture, or scalar, is passive, or has no dynamic
feedback on the flow—which is therefore determined independent of the scalar. Often, the scalar diffusivity is small
compared with the viscosity of the fluid, so that their ratio, the so-called Schmidt number, Sc = ν/κ, is large. Our interest
here lies in the advection and diffusion of passive scalars for large values of Sc. In particular, we wish to understand the
recent result from numerical simulations that turbulent mixing becomes more isotropic when Sc is increased [1]. This
approach to isotropic state is evident from the fact that deviations from it, as quantified by odd moments of the scalar
derivative along a mean scalar gradient, ∂‖θ, decrease as Sc increases from 1 to 64 for a fixed Reynolds number of the
turbulent flow [1].
The reason for the anisotropy for Sc = O(1) has long been known to be the presence of ramp-cliff structures in the
signature of the scalar field whenever there is a mean gradient in the scalar alone or in both scalar and velocity. These
cliff structures of the scalar field are related to sharp fronts of the scalar gradient distribution in three-dimensional space
and can be found in the positive far tail of the probability density function (PDF) of the scalar gradient fields.
Analytical approaches to understanding the features are difficult. Significant progress has been made for the so-called
Kraichnan model of passive scalars in which the advecting velocity field is assumed to be Gaussian and to vary infinitely
rapidly in time; for a review see [2]. However, even for the synthetic Kraichnan velocity field, a systematic study of
anisotropy with Sc has not been made. Another approach [3], which follows Batchelor’s original model of quasistatic
straining motion, provides upper bounds for scalar derivative moments as functions of Sc. However, the problem still
contains numerous open questions. For instance, it is unclear as to what changes occur in and around the ramp-cliff
structures as Sc →∞.
Some of these changes were quantified via high-resolution numerical simulations of turbulent mixing [4]. We particularly
considered level sets of the steep gradients and related them to the local structure of the advecting flow. Furthermore,
the multifractal approach is known to sample efficiently the “singular” structures at small scales [5]. Therefore, we also
studied the scalar dissipation field in high-Sc cases.
Our numerical results were obtained in a homogeneously sheared flow [6] with 〈ux〉 = Cy, where C is a constant,
at a Taylor-microscale Reynolds number Rλ of 87 in which the scalar field of constant mean gradient was allowed to
evolve according to the advection-diffusion equation. The Schmidt number was varied from 1 to 64. The pseudospectral
simulations were done with resolutions of 512× 257× 512 grid points for a box of size 2π : π : 2π. We ensure that the
scalar fluctuations are properly resolved by requiring that kmaxηB ≥ 1.3 with kmax =

√
2Nmax/3, where Nmax = 512;

the Batchelor scale ηB ≡ η/
√

Sc and the Kolmogorov scale η ≡ (ν3/ε)1/4. The scalar gradient G = ey/π for all runs.

RESULTS

To shed some on the return to isotropic mixing, we show in Figure 1 three slices of the scalar field at the same moment of
evolution, each slice corresponding to a different value of Sc. It is clear that the large structure, and the front associated
with it, do not change with Sc but internal striations of finer scale accompany larger Sc. These striations increase the
relative population of negative gradients. This is what causes the tail of the PDF for the positive gradient values to
be effectively unchanged, whereas the events with negative gradients, shows higher probability as Sc increases, thus
rendering the PDFs increasingly symmetric.
The question that immediately arises is what type of flow causes the steepest negative scalar gradients, and their increase
with increasing Sc? To answer these questions, we have performed an eigenvalue analysis of the local velocity gradients
in the vicinity of the largest scalar gradients. Here, pure straining motion corresponds with three real eigenvalues and local
vortical motion with a conjugate complex pair and a real third eigenvalue. We performed this analysis in the vicinity of
the steepest positive and negative scalar gradients only. For positive gradients, i.e. for the cliffs, local straining becomes
somewhat more dominant with growing Sc, while, for the negative tails, the swirling and straining motion contribute in
almost equal parts for large Sc. This is consistent with the view that the cliffs are associated with the front stagnation
point of a moving fluid parcel, where the velocity field is predominantly straining, while the negative slopes come from



Figure 1. Slices of the total scalar field (mean plus fluctuation) for Sc = 1 (left), 8 (middle), and 64 (right), all of which are advected
by the same flow. Only a fraction of the simulation domain is shown.

the wake region behind such parcels where the fluid motion is both vortical and straining.
The geometric properties of the scalar gradient level sets were also studied by means of box-counting analysis. The box
counting dimension D0 of a level set F , embedded in the three-dimensional space, is defined as the scaling exponent
of Nδ(F ) = N0δ

−D0 where Nδ(F ) is the number of cubes of size δ that are needed to cover F . While for lower Sc
differences between the positive level set and its negative counterpart were detected, they disappear more and more with
increasing Schmidt number.
The variation of the level set threshold at fixed Schmidt numbers clearly indicates the multifractal character of the gradient
fields. For operational purposes, it is more convenient to consider the scalar dissipation field, εθ(x, t) = κ

∑3
j=1 (∂jθ)

2.
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r is the ith cube with length r. The spectrum of generalized dimensions [5], Dq(q), obeys the following scaling
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It was found that the spectrum of generalized dimensions gets flatter with increasing Sc means that in the limit of very
large Sc the scalar dissipation rate becomes a monofractal, i.e. Dq = D0 for all q. The physical picture is as follows:
large “singular” spikes of the scalar dissipation rate fill out the whole space more and more, so that the “quiet” regions
in-between become less prevalent. The degree of spatial and temporal intermittency decreases, which is just the property
to which the spectrum is sensitive. We can quantify this result also by fitting a bimodal multifractal cascade model to the
data. For Sc = 8 we obtain p = 0.86, for Sc = 64 a value of p = 0.81, decreasing to 0.58 for experimental data at
Sc = 1900. The model would yield a monofractal dissipation field for equidistributed energy flux, i.e. p = 0.5.
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