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Summary The convective instabilities of binary alloys solidified from a bottom boundary are analyzed under linear stability theory. By 
using a similarity variable, the time-dependent disturbance equations for the liquid and mushy layers are transformed to the self-similar 
stability equations. The critical conditions at the onset of convection in the mushy layer are found numerically for the solidification of 
aqueous ammonium chloride solution. 
 

INTRODUCTION 
 
Convective instability during solidification causes freckles in a resultant solid and often controls the quality of solid products 
in the processes of crystal growth and castings of metallic alloys. In binary solidification, a mushy layer of dendritic crystals 
is often formed by constitutional supercooling. When a binary alloy is solidified in a gravitational field, an unstable density 
profile induced by concentration and temperature gradient may occur buoyancy-driven convection in the mushy layer. 
In the present study, the onset of convective instabilities in the mushy layer during time-dependent solidification of binary 
alloys is analyzed based on propagation theory we have developed. By using a similarity variable, the time-dependent 
disturbance equations for the liquid and mushy layers are transformed to the self-similar stability equations. The present 
study suggests the critical conditions to mark the convective motion in the liquid and mushy layers of the solidification 
system in which the mushy-layer thickness and the density profile vary with time.  
The system considered here is shown in Fig. 1. The supereutectic melt is initially quiescent at a constant temperature  and 
a constant solute concentration . For time  the bottom boundary of the melt is supercooled at a constant temperature, 
which is lower than the eutectic temperature . The mushy layer grows above a eutectic solid layer, and compositional 
convection of light residual liquid may be induced. It is assumed that the mush-solid interface is at the eutectic concentration 

 and the solid-layer thickness at the bottom is very small. The position of the mush-liquid interface 
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moving upward, where λ  is the phase-change rate and κ  is the thermal diffusivity. 
  

SELF-SIMILAR STABILITY EQUATIONS 
 
The governing equations for convection during solidification of binary alloys are described well by Worster [1] and Emms 
and Fowler [2]. In the present study, the non-dimensional time-dependent disturbance equations are transformed to functions 
of a similarity variable ))2/(/( τλζ zhz == , where h is the mushy-layer thickness scaled by an arbitrary length L, and τ  
is the time scaled by . The self-similar stability equations in the mushy layer are given in the previous work [3]: κ/2L
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where ζd/dD =  and is the wave number. The amplitude of velocity disturbance  has the scale of , where *a *
mw 3/ LΠκ Π  

is the permeability of the mushy layer. In the liquid layer, the amplitude of velocity disturbance is rescaled by a non-
dimensional time-dependent scaling factor  based on propagation 
theory, and  has the scale of . The self-similar stability equations 
in the liquid layer are given by 

)4( 22 τλ=h
*w 32 / LHκ

Z

H(t)
Mushy layer

TE

Liquid layer 

T 8 8C

0
Cooled boundary x
CE

 0
**

T
*2*22

D)D2D( θθζλ wRa =−+ ,  

0
**

S
*2*22

D)D2D( cwRcLeaLe =−+ ζλ ,  

)()]2DD(2)D[( **2**2*2*32
22*2

cawaa
Pr

a −=+−+− θζζλ . 

The Darcy-Rayleigh number  is based on the 
mushy-layer thickness H, where 
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ECCC −= ∞∆ , and  is the slope of the liquidus curve. The thermal 
Rayleigh number  and the solutal Rayleigh number  are defined as 

 and  respectively. The parameter 

 is the Stefan number 
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( CCC ∆/)( s ∞−= ), where L  denotes the latent heat of fusion,  the pC
 Fig. 1. Schematic diagram of liquid and mushy 
 layers during time-dependent solidification.  



  

specific heat, and  the solute concentration in solid. The parameter Le is the Lewis number (=sC κ/D ), and Pr is the Prandtl 
number (= κν / ), where D is the solute diffusivity, and ν is the kinematic viscosity. In the mushy layer, the basic-state 
equation is given by  
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with 0m0m00 DD, θθθθ ==   at  ζ=1, and  at  ζ=0. In the liquid layer, the basic-state temperature and concentration 

fields are given by 
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))/erfc(erfc()( i0 λλζθθθθ ∞∞ −+=  and )/)/erfc(/erfc(c i0 LeLe λλζθ= , respectively, where iθ  
( TCTT ∆/))(( Li ∞−= ) is the temperature at the liquid-mush interface, and ∞θ  ( TCTT ∆/))(( L ∞∞ −= ) is the superheat. 
The following boundary conditions are applied to the self-similar stability equations: 
for  ζ ∞,     → 0D,0,0,0 **** ==== wwcθ ,      
at  ζ=1,                         
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where  denotes the Darcy number. The Rayleigh numbers have the relations of  and 
, where 
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RESULTS AND DISCUSSION 

 
The shooting method is employed to solve the self-similar stability equations [3]. We investigate the stability criteria for 

, St=5, 0→A γ =20, , and Pr=10. These values are relevant to solidification of aqueous ammonium chloride 
solution. The marginal stability curves for various Lewis numbers with 
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∞θ =0.5 are shown in Fig. 2. The critical Darcy-
Rayleigh number  for mushy-layer-mode convection is found to be 19 for *

m,cR 1.0=∞θ and , and 7.6 for 013.0=Le 1=∞θ  

and . These -values compare with the existing results [1,2,4]. The critical mushy-layer thickness  is 
predicted to be 0.8~2 cm for the onset of mushy-layer-mode convection, which is consistent with the existing experimental 
data [5].  
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The present results show that the Prandtl number, the Lewis number, and the superheat are destabilizing parameters for 
convective instabilities. With increasing the Darcy number *Π , the critical Rayleigh numbers increase and mushy-layer 
mode convection becomes dominant. However, when *Π  is small, boundary-layer-mode convection becomes dominant, 
since the permeability of the mushy layer is small and the resistance to mushy-layer-mode convection is large. The critical 
time  to mark the onset of mushy-layer-mode convection is predicted from the relation of .  It is found that 

 has a minimum point with varying 
ct κλ22

cc 4/Ht =

ct ∞θ  and that  decreases with 
increasing 

ct

∞θ  for 3.0<∞θ , while it increases for 3.0>∞θ . 
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