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BOUNDARY-LAYER ANALYSIS OF CHIMNEY STRUCTURES IN MUSHY LAYERS

Jacqueline Ashmore, M. Grae Worster
ITG, DAMTP, University of Cambridge, UK

Summary The presence of chimneys has a significant effect on the transport of heat and solute through a mushy layer. Coupled
nonlinear partial differential equations govern the flow, pressure, temperature, solute concentration and solid fraction in the mushy
layer. We use boundary-layer analysis to find a similarity solution and thereby determine predictions of chimney width as well as the
fluid, heat and solute fluxes through it.

Background
During solidification of a multicomponent liquid, a morphological instability can occur that results in solid crystalsof
one component developing, forming a porous medium, with interstitial liquid that is rich in the other components. This is
referred to as a mushy layer. When density differences due toconcentration variations cause convection, the solid crystals
of the porous matrix can be dissolved in the region where the fluid upwells. These cylindrical liquid-filled channels are
called “chimneys.” Mushy layers and chimneys occur in industrial processes when binary alloys are solidified, and in
geophysical situations when saline water is frozen, for example (Worster, 1997).

Main assumptions
We consider a system in which the compositional buoyancy variations are destabilizing, and dominate over thermal
buoyancy effects, which we neglect. Since the thermal diffusion coefficient is much larger than the solute diffusion
coefficient, we neglect solute diffusion macroscopically.Also we assume that the mushy layer is in thermodynamic
equilibrium so that the temperature and concentration are related by the liquidus condition, and we assume that the
liquidus relationship can be approximated as being linear.Finally, we neglect changes of density on solidification.

Equations and boundary conditions
We consider the case that the solidifying system is moved at constant speedV through heat exchangers when a steady state
has been attained with respect to the heat exchangers. Such conditions are representative of industrial casting processes,
and are convenient for mathematical analysis. We denote pressure byp, the Darcy velocity in the moving frame byu, the
rescaled temperature byθ and the solid fraction byφ. Π(φ) represents the permeability of the mushy layer, and we define
the direction of motion to be in thez-direction.
In the mushy layer, we assume that the temperature and soluteconcentration are related by the liquidus condition. Then
the flow, pressure, temperature and solid fraction are determined by the following coupled nonlinear partial differential
equations:

u = −RΠ(∇p + θez), with ∇ · u = 0

u · ∇θ + Sφz = ∇
2θ + θz

u · ∇θ + (φ θ)z = θz + Cφz . (1)

An important parameter in the problem we consider is the Rayleigh numberR = β(C0 − CE)gΠ0/νV , whereβ =
ρ−1∂ρ/∂C, C0 is the far-field solute concentration,CE is the solute concentration at the eutectic point,g is the acceler-
ation due to gravity andν is the kinematic viscosity. Two other parameters which alsoappear in the basic equations are
the Stefan numberS = L/c∆T , whereL is the latent heat per unit mass,c is the specific heat and∆T is the difference
between the liquidus temperature far away and the eutectic temperature; andC = (CS − C0)/(C0 − CE), whereCS is
the solute concentration in the solid phase, which quantifies how much solute is incorporated on solidification.
The boundary conditions on the chimney wall are found using alubrication analysis of the flow in the chimney re-
gion, as performed by Chung and Worster (2002), plus the condition of marginal equilibrium formulated by Schulze and
Worster (1998). We impose that the solution far away from thechimney (i.e. at largex) must decay to a specified far-field
temperature distribution of the formczb, wherec andb are specified positive constants. Another important parameter that
enters the boundary conditions is the Darcy numberD = Π0V

2/κ2, whereΠ0 represents a typical permeability andκ is
the thermal diffusion coefficient.
Solutions
We consider a two-dimensional flow and use the streamfunction formulation. In numerical simulations (Schulze and
Worster, 1998) it has been observed that a thermal boundary layer structure develops around the chimney. We focus on
this region of the flow. A scaling analysis shows that the mushy layer depth scales asR−1/3, the chimney width scales
asD1/3/R2/9 and the thermal boundary layer width scales asR−2/3 (Schulze and Worster, 1988). We assume that
D1/3R4/9 � 1 so that the chimney width is small compared to the boundary layer width, and find a solution that is valid
in the asymptotic limit thatR � 1.
Neglecting variations in the permeability and using a lubrication approximation to equations (1), we find similarity solu-



tions in the variablesx andz for the streamfunction, the temperature and the solid fraction, that are valid in the thermal
boundary layer. The equation that governs the function of the similarity variable is a third order nonlinear differential
equation, which is solved by a numerical shooting method. The horizontal velocityu(x, z) varies asz−

1

2
(1−b)U(η), the

vertical velocityw(x, z) varies aszbW (η) and the temperature fieldθ(x, z) varies aszbΘ(η), where the similarity variable
η = x/z

1

2
(1−β) and the functionsW andΘ are plotted in Figure 1.
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Figure 1. The vertical velocity functionW (η) (dash line) and temperature functionΘ(η) (dash-dot line) as a function ofη =

x/z
1

2
(1−β), for b = 1 andc = 1.

We also determine numerical results for the fluid flux, the heat and solute flux through the chimney, and the chimney
width. The rescaled chimney width varies asz

1

6
(1−b); the mass flux varies asz

1

2
(1+b); and the heat flux varies aszb.

Some results for the prefactors, which depend on the far-field boundary condition, are shown in Figure 2. This theoretical
study follows from and complements previous numerical studies of chimneys (e.g. Schulze and Worster, 1998; Chung and
Worster, 2002). It is also related to studies of the temperature field near a heated plate submerged in a saturated porous
medium (e.g. Johnson and Cheng, 1978).
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Figure 2. Numerical results for rescaled chimney width, mass flux and heat flux through the chimney. The far-field temperature
boundary condition isczb.

Conclusions
Our study provides a theoretical prediction of a steady-state chimney. Although the analysis does not incorporate the finite
depth of the mushy layer, since it is based on a boundary layeranalysis, a suitably truncated solution may be expected
to provide a reasonable prediction of experimental results. In addition, the analytical results for a steady-state isolated
chimney may be a useful foundation for studies of the dynamics of multiple chimneys.
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