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Summary The presence of chimneys has a significant effect on theposnsf heat and solute through a mushy layer. Coupled
nonlinear partial differential equations govern the flonegsure, temperature, solute concentration and solitidran the mushy
layer. We use boundary-layer analysis to find a similaritytsan and thereby determine predictions of chimney widtwell as the
fluid, heat and solute fluxes through it.

Background

During solidification of a multicomponent liquid, a morpbgical instability can occur that results in solid crystafs
one component developing, forming a porous medium, witkrgtitial liquid that is rich in the other components. TS i
referred to as a mushy layer. When density differences doertoentration variations cause convection, the solictalys
of the porous matrix can be dissolved in the region where thé flpwells. These cylindrical liquid-filled channels are
called “chimneys.” Mushy layers and chimneys occur in indakprocesses when binary alloys are solidified, and in
geophysical situations when saline water is frozen, forrgpda (Worster, 1997).

Main assumptions

We consider a system in which the compositional buoyanciatians are destabilizing, and dominate over thermal
buoyancy effects, which we neglect. Since the thermal siiffiu coefficient is much larger than the solute diffusion

coefficient, we neglect solute diffusion macroscopicalbiso we assume that the mushy layer is in thermodynamic
equilibrium so that the temperature and concentration eletad by the liquidus condition, and we assume that the
liquidus relationship can be approximated as being linéiarlly, we neglect changes of density on solidification.

Equations and boundary conditions

We consider the case that the solidifying system is movedratant speet through heat exchangers when a steady state
has been attained with respect to the heat exchangers. 8aodhions are representative of industrial casting preess
and are convenient for mathematical analysis. We denogspre byp, the Darcy velocity in the moving frame hy, the
rescaled temperature fyand the solid fraction by. I1(¢) represents the permeability of the mushy layer, and we define
the direction of mation to be in the-direction.

In the mushy layer, we assume that the temperature and smotentration are related by the liquidus condition. Then
the flow, pressure, temperature and solid fraction are uhited by the following coupled nonlinear partial differient
equations:

u=—RII(Vp+0be,), with V-u=0
u-Vo+S¢p., = V30+0,
u- Vo + (d’ e)z = ez + CQSZ (1)

An important parameter in the problem we consider is the &gllnumberR = (Cy — Cg)glly/vV, wheres =
p~10p/0C, C, is the far-field solute concentratiofi is the solute concentration at the eutectic pajri the acceler-
ation due to gravity and is the kinematic viscosity. Two other parameters which algpear in the basic equations are
the Stefan numbe$ = L£/cAT, whereL is the latent heat per unit massis the specific heat andT is the difference
between the liquidus temperature far away and the eutextipérature; and = (Cs — Cy)/(Co — Cg), whereCy is

the solute concentration in the solid phase, which quasfif@v much solute is incorporated on solidification.

The boundary conditions on the chimney wall are found usidgbaication analysis of the flow in the chimney re-
gion, as performed by Chung and Worster (2002), plus theitionabf marginal equilibrium formulated by Schulze and
Worster (1998). We impose that the solution far away froncthienney (i.e. at large) must decay to a specified far-field
temperature distribution of the form®, wherec andb are specified positive constants. Another important patantieat
enters the boundary conditions is the Darcy nunet 11,V 2 /x2, wherell, represents a typical permeability ands

the thermal diffusion coefficient.

Solutions

We consider a two-dimensional flow and use the streamfumdtiomulation. In numerical simulations (Schulze and
Worster, 1998) it has been observed that a thermal boundgey structure develops around the chimney. We focus on
this region of the flow. A scaling analysis shows that the nydalier depth scales @ ~'/2, the chimney width scales
asD'/3/R?/® and the thermal boundary layer width scalesRas?/? (Schulze and Worster, 1988). We assume that
D3R « 1 so that the chimney width is small compared to the boundamer lidth, and find a solution that is valid
in the asymptotic limit thalk > 1.

Neglecting variations in the permeability and using a loétion approximation to equations (1), we find similaritjuso



tions in the variables andz for the streamfunction, the temperature and the solidifracthat are valid in the thermal
boundary layer. The equation that governs the function efsiimilarity variable is a third order nonlinear differeaiti
equation, which is solved by a numerical shooting method Adrizontal velocityu(z, z) varies a&—%(l—b)U(n), the
vertical velocityw(z, ) varies as*W () and the temperature fieldz, z) varies ag’0(n), where the similarity variable
n = x/22(1-A) and the function$” and® are plotted in Figure 1.
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Figure 1. The vertical velocity functiotV (n) (dash line) and temperature functié(n) (dash-dot line) as a function of =
2/220=P forb=1andc = 1.

We also determine numerical results for the fluid flux, thetlzem solute flux through the chimney, and the chimney
width. The rescaled chimney width varies a1 ~?); the mass flux varies asz(1+%); and the heat flux varies as$.

Some results for the prefactors, which depend on the fatHielndary condition, are shown in Figure 2. This theorética
study follows from and complements previous numericalistdf chimneys (e.g. Schulze and Worster, 1998; Chung and
Worster, 2002). It is also related to studies of the tempeedield near a heated plate submerged in a saturated porous
medium (e.g. Johnson and Cheng, 1978).
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Figure 2. Numerical results for rescaled chimney width, mass flux asal ilux through the chimney. The far-field temperature
boundary condition isz".

Conclusions

Our study provides a theoretical prediction of a steadtesthimney. Although the analysis does not incorporate tfigfi
depth of the mushy layer, since it is based on a boundary E&yalysis, a suitably truncated solution may be expected
to provide a reasonable prediction of experimental resuiftsaddition, the analytical results for a steady-statéatsal
chimney may be a useful foundation for studies of the dynamiienultiple chimneys.
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