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Summary We study the instability of a planar solid-melt interface during directional solidification of a binary mixture. The molten 
zone is oscillated by an imposed temperature modulation. The basic state is solved analytically with the bulk melt quiescent by 
expanding the governing equations in terms of the small amplitude of modulation. A preliminary investigation on the morphological 
instability of the basic state is presented. 
 

INTRODUCTION 
 
The possibility of processing crystal growths in space is attractive because the buoyancy-driven convection may be 
eliminated in such a low-level background of gravitation. However other physical factors may in turn dominate the 
casting conditions. For example, the g-jitter due to the inherent mechanical vibrations may itself induce buoyant 
convection, and the related problems have been drawn a great deal of research efforts [1]. In this paper, we consider 
another potential factor, the temperature fluctuations. Such a time-dependent variation may result from the orbital 
maneuvers; the space laboratory may periodically face the sun leading to fluctuations of the laboratory temperature. In 
addition earth based experiments have also shown the molten region can undergo significant temperature oscillations 
induced by such as the thermo-capillary instability of the floating zone [2]. We therefore study the stability of a planar 
solid-melt boundary during directional solidification of a binary alloy assuming the temperature is being modulated in a 
sinusoidal way. We hope the present study will gain an insight into the morphological instability of oscillatory molten 
zones. 

 
MATHEMATICAL FORMULATION AND ASSUMPTIONS 

 
The system considered consists of a binary alloy solidifying from below. The solid-melt interface is described by 

( , , )z h x y t=

V

. The interface is assumed to advance into the bulk melt at a time-mean constant pulling rate  and have 
a planar shape before the instability occurs. We choose the coordinates fixed at the interface moving upward at the same 
speed . The governing equations are the continuity equation, the momentum equation and the concentration equation 
[3]: 
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At the solid-melt interface ( , , )z h x y t= , the boundary conditions are  
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These equations represent respectively the no-slip condition, the no-penetration condition, the conservation of solute at 
the interface, and the thermodynamic relation between the melting temperature and composition. Note that the surface 
energy effect (the Gibbs-Thompson effect) is also included in the thermodynamic condition, where U  is the 
dimensionless capillary length and K  the curvature of the interface (assumed negative for a concave projection into 
the melt). The molten zone is assumed to have a time-mean constant height H , where the melt is motionless and the 
solute concentration is fixed at an imposed value. Therefore the corresponding boundary conditions at z H=  are, 

=u 0 , . 1C =
The governing equations and boundary conditions have been made dimensionless with the solute-field scales:  for 
velocity, 

V
D V  for length, (where D  is the solute diffusivity), 2D V  for time, the concentration value at z H=  

for concentration, and the freezing temperature of the pure solvent for temperature. The two dimensionless parameters 
appearing in the governing equations are the Schmidt number  and the solutal Rayleigh number cS cR . To simplify 
the analysis, the frozen temperature assumption is adopted by which the temperature is assumed fixed at its imposed 
value. We assume the temperature is modulated by  

0 (1 cos )T T t Gzδ Ω= + + , 
where  is the amplitude of the temperature oscillation,  is the input frequency of modulation, and G is the 
temperature gradient assumed to be a constant. 
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Figure 1. The instantaneous temperature T and melting temperature 

 at two phases of a period: (a) , (b) . 

 
Figure 3. The neutral curves in terms of the Sekerka number  and the wave 
number . The left curve corresponds to the synchronous mode and the right 
curve the subharmonic mode. 

Figure 2. The interface position 
oscillates as a function of time. 

RESULTS 
Basic state 
Before the onset of morphological instability, the melt is quiescent relative to the laboratory frame and the solid-melt 
interface remains flat. We call this state the basic state. The basic state is solved by expanding the governing equations 
in term of , which is assumed to be small. The basic-state interface position and concentration have the form δ

1( ) ...bh h tδ= +  

0 1( , ) ( , ) ...bC C z t C z tδ= + +  
Shown in figure 1 are the instantaneous temperature T and the melting temperature  at two phases of a period: 
(a)

( )LT C
2tΩ π=  and (b) 3 2tΩ π= . Because the melting temperature is a function of the concentration , the melting 

temperature curve implies the existence of a concentration boundary layer near the interface. The depth as well as the 
strength of the supercooling region varies in a sinusoidal way. The time dependence of the interface position  is 
shown in figure 2. The interface moves back and forth sinusoidally relative to the moving frame. We found the 
amplitude of the interface position decreases as the input frequency is increased.  
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Linear stability analysis 
A preliminary linear stability analysis on the basic state is performed assuming . Namely, we have neglected the 
gravitational effects. Two morphological instability modes are found. Their neutral curves are shown in figure 3 in 
terms of the Sekerka number  and the wave number  for the case of  and . The left curve of 
smaller values of the wave numbers is the synchronous mode having the same oscillatory frequency as that of the input 
temperature modulation. The right curve is the subharmonic mode that has the frequency half the input frequency. As 
shown, the subharmonic mode is likely to be more critical and dominant. 
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CONCLUSIONS 

 
We consider in this paper the directional solidification of a binary mixture undergoing temperature modulations. The 
solid-melt interface moves back and forth in a sinusoidal way. The interfacial instability tends to occur with a 
subharmonic mode whose oscillatory frequency is half the input frequency. The wavelengths of the subharmonic mode 
are much smaller than that of the synchronous mode. 
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