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It is well known that dense fluidized beds exhibit a rich variety of complex, inhomogeneous flow 
structures, ranging from one-dimensional traveling waves to bubble-like voids, and the hierarchy of 
these structures has been a subject of many theoretical and experimental studies [1, 2]. An Eulerian two-
phase flow model, which treats the fluid and particle phases as interpenetrating continua, coupled with 
simple phenomenological closures for the effective stresses and the fluid-particle interaction force, 
seems to capture the experimentally observed structures in a qualitatively correct manner; however, 
quantitative predictions remain elusive [1]. Much effort is in progress to develop more accurate closures 
through computational simulations of flows involving homogeneous assemblies of particles [e.g., see 3, 
4].  

In the present study, we first demonstrate that the transition from homogeneous fluidization 
(worming regime) to an inhomogeneous system with traveling, one-dimensional waves observed 
experimentally in fluidized beds of limited lateral extent at relatively low fluidization velocities [2] can 
be captured through detailed discrete particle simulations. From our simulations, we then determine how 
the particle concentration, fluid and particle velocities, fluid-particle interaction force, stress due to 
particle-particle interactions, fluid phase viscous and pseudo-turbulent stresses vary in the traveling 
wave. Such detailed information not only allows us to examine the importance of various terms in the 
continuum model and various microphysics such as lubrication force, but also assess whether closures 
developed from simulations of homogeneous suspensions should be supplemented for non-local effects 
in inhomogeneous systems.    

The flow domain that we consider in our simulations is fully periodic. It contains spherical, solid 
particles (all having the same diameter dp). The size of the domain in the examples illustrated below is 
6dp in the two lateral directions, and 20dp in the flow direction. A body force exerted on the fluid drives 
the flow. This body force is balanced by a force acting on the solids in the opposite direction. We apply 
lattice-Boltzmann discretization of the Navier-Stokes equations to solve the liquid flow in between the 
particles [5]. The particles (which were given a diameter of 10 grid-spacing) are represented by means of 
an immersed boundary technique [6]. Their motion is controlled by the hydrodynamic force emerging 
from the lattice-Boltzmann method, by the leading order term of the radial lubrication force that acts as a 
sub-grid force when particle surfaces are in close proximity (less than one grid-spacing apart), and by 
hard-sphere collisions (that in this study are assumed to be elastic, and frictionless). 

The operating conditions can be fully characterized by three dimensionless parameters: the average 
solids volume fraction φ0, the density ratio ρs/ρf, and the Reynolds number of a single particle, freely 

falling in the working fluid: =
ν
t p

t

u d
Re . These three parameters are used to translate physical units into 

lattice-Boltzmann units. The simulations are designed to mimic one of the cases defined by Duru et al. 
[2], more specifically their Combination #7 (with φ0=0.488, Ret=120 and ρs/ρf =4.1). 

In Figure 1, we show snapshots of our flow system operating in the worming (1A), and in the planar 
wave regime (1B). In order to reach the latter regime, we had to operate the bed at a significantly lower 
volume fraction compared to the experiment (0.43 versus 0.488). This is most probably due to the 
hydrodynamic diameter of the particles being larger than their given diameter on which φ0 is based [7]. 
The space-time graphs in Figure 2 show the transition from the worming to the planer-wave regime. The 
homogeneous cases (A and B) have much less volume fraction fluctuations than the other cases that are 
in the planar wave regime. The wave speed that can be derived from the space-time graphs corresponds 

                                                 
* Permanent address: Kramers Laboratorium , Delft University of Technology, Prins Bernhardlaan 6, 2628 BW 
Delft, Netherlands  



very well with the experimentally observed wave speed: 0.24ut in the experiment, 0.25ut in the 
simulation. Time-averaged waveforms are given in Figure 3. These waves are quite noisy, and the 
simulation must be run for a much longer duration to obtain a smoother one-dimensional wave. 
Comparison of Figures 1D and 1E, and the waveforms in Figure 3 suggest that the lubrication force is 
not important in this example.   

In this presentation, we will describe and discuss further details concerning spatial variation of 
various quantities such as fluid-particle interaction force and particle phase pressure. 
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Figure 1. Cross-sections of single realizations of the solid-liquid flow. In both cases Ret=120 and ρs/ρf =4.1. 
Case A has φ0=0.48, case B has φ0=0.41. The gray scale indicates the absolute value of the liquid velocity. 
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Figure 2. Space (horizontal) – time (vertical) plots of 
the solids phase volume fraction. Case A-D have 
φ0=0.48, 0.46, 0.43, and 0.41 respectively, and do not 
take into account the radial lubrication force. Case E is 
the same as case D, but now with lubrication.  
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Figure 3.  Time-averaged wave form of cases D 
(bottom) and E (top) as defined in Figure 2.  


