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Summary
The boundary layers over axisymmetric bodies have been studied far less than those over two-dimensional surfaces. Our main obective
is to understand how the laminar-turbulent transition process in a boundary layer over an axisymmetric body is different from that over
a two-dimensional surface. We study the primary (linear) instability, the secondary instability, and the transition zone, and find that all
these are qualitatively different from 2D boundary layers. It is shown that transverse curvarture has a significant stabilizing effect on
the primary stability. Consistent with the recent findings of Tuttyet al [1], we see that three-dimensional modes can go unstable first,
whereas over a 2D surface 2D modes are most unstable (Squire’s theorem[2]), Interestingly, an opposing effect of curvature is seen
on secondary instability behaviour: competing primary modes produce a rich variety in secondary disturbance growth, indicating early
entry into the nonlinear domain. Early stages of the transition zone, where turbulent spots grow as they convect, are similar to 2D flow,
while due to the spots wrapping around the body, transition proceeds slower in the later stages.

INTRODUCTION

The laminar to turbulent transition in a two-dimensional boundary layer has been a subject of great interest for several
decades, but the boundary layer created by axial flow past an axisymmetric body, such as in underwater applications,
has received far less attention. We find the laminar instability and transition process in axisymmetric boundary layers
to be qualitatively different from its two-dimensional counterpart at every stage, and there are aspects of mathematical
interst. We study secondary and algebraic disturbance growth to determine whether, and which of, these mechanisms are
dominant in axisymmetric boundary layers.

SUMMARY OF MAIN RESULTS

A summary of our findings is presented schematically in figure 1. Transverse curvature has the effect of stabilizing the
primary (linear) mode, so the first critical Reynolds number is higher. A totally new route to transition is however possible
due to the geometry since Squire’s theorem [2], stating that 2D modes are the most unstable primary (linear) modes, may
now be violated. (Due to the transverse curvature, the resulting stability equations cannot be transformed in the manner
proposed by Squire.) Our linear stability studies find that, at various levels of curvature, three dimensional modes of
azimuthal wavenumbern = 1 or 2 are indeed the least stable (figure 2a). These results are consistent with the findings of
Tutty et al [1].
A secondary instability analysis is carried out in the standard manner following Herbert[3]. Secondary disturbance growth
is much more complex than in 2D. Since several primary modes are nearly as stable as each other, a variety of secondary
modes are triggered at a given Reynolds number. Nonlinear interactions among these modes are therefore likely to bring
the transition Reynolds number forward, as depicted in figure 1. The growth of secondary disturbances for a few example
modes is shown in figure 2b, a detailed analysis and comparison with 2D will be presented at the conference. As in the
flat plate boundary layer the sub-harmonic modes are found to be more dominant than the harmonic.

Flat Plate
R R

Cylinder
R R

R R

R Rs e

ec

c

s t

t

Figure 1. Schematic representation of the differences in onset of different stages of the transition process in 2D and axisymmetric
boundary layers.Rc is the Reynolds number of linear instability,Rs is the onset of secondary disturbance growth,Rt is the onset of
transition to turbulence, andRe shows the end of the transition zone, where the flow is fully turbulent.

We have carried out stochastic simulations inspired by a cellular automaton approach of the birth and downstream prop-
agation and growth of turbulent spots in the transition zone of an axisymmetric boundary layer, details will be presented
at the conference. The intermittencyγ, the fraction of the time that the flow is turbulent at a given streamwise locationx
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Figure 2. (a) Variation of critical Reynolds number with curvature,S for different modes,[4]. Growth of secondary waves with different
Ap at Reynolds number300, primary wavenumber(α) = 0.10, S0 = 0.05 andn andm are the number of primary and secondary
waves encircling the body respectively.Ap is the amplitude of the primary disturbance.

is shown in figure 3 a. The quantityc is the circumference of the body. In the initial region, transition proceeds exactly as
it would in 2D flow. This is because the spots are too small to "see" the body. When spots wrap themselves around the
cylinder, however, there is no further room for lateral growth, and transition proceeds much more slowly after this. The
burst rateB shown in figure 3 b is another indication of the differences in the transition process. Here,B is a measure of
the rate at which the flow switches from laminar to turbulent.
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Figure 3. a. The intermitteny factorF2 ≡
√
−(log(1− γ(x)) Vs. x, for differentc. The straight line is the 2D result. b. The burst

rate in the transition zone.
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