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Summary: With the aim of predicting the transition point on a general body given the free-stream con-
ditions, we devised a method using asymptotic receptivity analysis as an upstream boundary condition
for numerical stability analysis.

For small free-stream disturbances, the problem of predicting transition can be split into two parts,
the receptivity part and the stability part. Receptivity is concerned with how the free-stream distur-
bances give rise to disturbances in the boundary layer and typically arises when the boundary layer
changes over short streamwise scales, such as near the leading edge of a body.

For large Reynolds number, Re, the neutral stability point is O(ε−2) downstream of the leading edge,
where ε = Re−

1
6 , and its position is independent of the exact form of the free-stream disturbance in

the receptivity region. The amplitude of the boundary layer mode which eventually becomes unstable
is determined by a receptivity region. Downstream of the neutral stability point, disturbances grow,
leading eventually to nonlinear breakdown and transition to turbulence. Thus the amplitude of the
unstable mode at the neutral stability point is crucial in determining the position of transition.

Three approaches to understanding the transition process are available.

(i) Experiments: Experimentalists, e.g. Saric et al. (1995), typically measure the transition point
and the amplitude of the Tollmien-Schlichting (T-S) wave downstream of the neutral stability point.

(ii) Numerics: Numerical Navier-Stokes (N-S) solvers have been used to solve the receptiv-
ity/stability problem simultaneously (Wanderley and Corke, 2001). However these solvers only work
for moderately large Reynolds numbers, obtaining solutions is very time consuming, and identifying the
amplitude of the unsteady modes which eventually become unstable is difficult.

(iii) Asymptotics: At large Reynolds numbers, the receptivity process close to the leading edge
is analysed separately and then matched to a triple-deck asymptotic analysis of the Orr-Sommerfeld
region (Goldstein, 1983). The asymptotic structure is summarised in figure 1. The advantage of such
an approach is that scaling on Reynolds number and dependence on the exact form of the free-stream
disturbance is directly determined. However, even for a semi-infinite flat plate, the asymptotic analysis
of the Orr-Sommerfeld region is so intricate that comparing wave amplitudes at the neutral stability
point with experiments is impractical.
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Figure 1: Figure showing the regions on a flat plate
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Figure 2: Comparison of numerical solution of PSE and asymptotic results of (i) the real and (ii)
imaginary parts of the wavenumber , κ, as a function of downstream distance for ε = 0.1

In this paper we consider an asymptotic analysis of the receptivity region and then use the far-
downstream limiting form as an initial condition for a numerical solution marching downstream using
the Parabolized Stability Equation (PSE) (Bertolotti et al., 1992). The PSE method reduces computation
time greatly compared to full N-S solvers. The advantage of the combined approach compared to the
fully asymptotic treatment is that bodies with curved surfaces can easily be considered. However, before
we can extend this method to more general bodies, we first present comparisons with the semi-infinite
flat plate analysis.

Figure 2 shows the comparison between the numerical solution to the PSE and Goldstein’s asymptotic
solution for the wavenumber, κ, as a function of distance downstream, for ε = 0.1. We use as our initial
condition a composite solution constructed from the three decks of the eigensolution determined by the
receptivity analysis. Downstream of the starting point of the PSE calculations there is good agreement
between numerical results and the asymptotic predictions, at least as far as the neutral stability point,
located at x̃1 ≈ 3.65. Further downstream agreement is not as good, probably due to non-uniformity in
the small-ε expansion of κ. However, this is not significant since it is the wave amplitude at the neutral
stability point which is of prime importance in the current work. Reducing ε improves the agreement,
although it has not been possible to demonstrate that all orders in the asymptotic expansion of κ are
correctly determined. The rapid variation in κ in the early stages of the PSE calculation are due to the
adjustment in the mode shape from the composite solution based on the small asymptotic theory. In the
example shown, PSE calculations were started at x̃1 = 0.5. Calculations were repeated starting from
other values of x̃1 and the behaviour further downstream showed similar agreement with asymptotic
results.

We also compared the wave shape from the PSE analysis with the triple deck asymptotic form from
Goldstein’s Orr-Sommerfeld analysis. The results were very encouraging, although no results are printed
here.

CONCLUSIONS

The results shown confirm the PSE formulation has been implemented correctly in the numerical
codes and the upstream boundary conditions imposed are consistent. Results will be presented for bodies
with non-zero mean pressure gradients and comparisons made with N-S results and experimental data.
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