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Summary
The influence of buoyancy onto the boundary-layer flow past a horizontal plate aligned parallel to a uniform free stream is characterized
by the buoyancy parameter K = Gr/Re5/2 where Gr and Re are the Grashof number and the Reynolds number, respectively.

An asymptotic analysis of the complete flow field including potential flow, boundary layer, wake and interaction region near the trailing
edge will be given for small buoyancy parameters and large Reynolds numbers in the distinguished limit KRe1/4 = O(1).

INTRODUCTION

Laminar two-dimensional mixed convection flow along a horizontal heated plate (plate temperature θ w) aligned parallel
to a uniform free stream (velocity u∞, temperature θ∞) will be investigated for large Reynolds Re and large Grashof
numbers Gr in a distinguished limit. In previous papers [1], [3] the boundary layer flow for K = Gr/Re 5/2 = O(1) has
been investigated. Since the buoyancy force is orthogonal to the main flow direction the boundary layer flow is affected
only indirectly by the buoyancy force. The buoyancy force is compensated by a hydro-static pressure distribution. Since
the boundary-layer thickness is not uniform this hydro-static pressure distribution is not uniform either resulting in a
horizontal pressure gradient accelerating or decelerating the boundary layer flow. Thus we speak of a favorable or an
adverse buoyancy. We note that for a fluid with a positive isobaric expansion coefficient buoyancy affects the boundary
layer flow on the upper side favorably and on the lower side adversely for a heated plate.
In case of adverse buoyancy the boundary-layer equations have the remarkable properties:

(i) They have a one parametric family of solutions.
(ii) Perturbations can propagate upstream in the boundary layer flow without interaction with the outer potential flow.

Both properties indicate that the boundary-layer flow has to be analyzed in context with the global flow field. A special
role will play the trailing edge region where we will apply triple deck methods. Thus the buoyancy parameter K has to
be chosen appropriately: K = κRe−1/4 with the reduced buoyancy parameter κ = O(1).

ASYMPTOTIC ANALYSIS

For the analysis the coordinates x and y parallel and normal to the plate, respectively, are made dimensionless with the
plate length. Velocities are referred to the velocity of the free stream and temperature difference are referred to θw − θ∞.
According to triple deck theory. We have to decompose the flow field into the different regions using the scalings listed
in table 1 and sketched in figure 1.

outer flow field (potential flow) x y

boundary layer x ȳ = yRe1/2

trailing edge upper deck X = xRe3/8 Y = yRe3/8

trailing edge main deck X = xRe3/8 ȳ = yRe4/8

trailing edge lower deck X = xRe3/8 ŷ = yRe5/8

wake x ȳ = yRe1/2

Table 1: Scalings of the different flow regions

Boundary-layer
The expansion of the flow and temperature field in the boundary-layer is given by

u(x, η) ∼ ū0(η) +Kū1(x, ȳ) + ..., θ(x, η) ∼ θ̄0(η) +Kθ̄1(x, ȳ) + ... with η = ȳ/
√
x+ 1, (1)

where ū0 is the Blasius velocity profile. Note that the leading order terms ū0, θ̄0 are independent of buoyancy. The
first order terms ū1 and θ̄1 are affected by buoyancy in two ways: Firstly by the hydro-static pressure distribution in the
boundary layer and secondly by the first order correction of the potential flow.

Wake
In the wake the solution has a similar expansion as in the boundary layer. We note that across the wake there is a hydro-
static pressures difference :

∆ph(x) = K(p1(x, 0+) − p1(x, 0−)) = K

∫
∞

−∞

θ̄0(x, ȳ) dȳ (2)



Moreover a curvature of the centerline of the wake has to be considered.

Potential flow
In contrast to usual boundary-layer flow problems the first order correction of the potential flow is not induced by the
displacement of the boundary but by the hydrostatic pressure difference across the wake which is of orderK = κRe−1/4.
Thus the stream function ψ of the outer flow field has the expansion ψ(x, y) = y+Kψ 1(x, y) + ... where ψ1 satisfies the
boundary conditions:

ψ1,x(x, 0) = 0 for − 1 < x < 0, ψ1,y(x, 0) = −
∫

∞

−∞

θ̄0(x, ȳ) dȳ for 0 < x. (3)

In [2] the potential flow problem for ψ y(x, 0) = const for x > 0 has been solved. It turned out that this potential flow
problem for the first order correction has no solution if considered in the entire plane. The singularity of the potential flow
can be removed if one considers the flow between two distant walls [2].

Trailing Edge
Near the trailing edge the usual triple deck scaling applies [5]. We expand all flow quantities with respect to Re and K
with KRe1/4 = O(1). Thus to leading order we recover the well known trailing edge problem for a plate in a parallel
uniform free stream [4]. Buoyancy influences only the second order terms, which can be decomposed into terms that are
affected by buoyancy and terms which are independent of K:

u = 1 + Re−1/4us + Re−3/8(u2 +KRe1/4∆u2) + ... (4)

Note that subscript s denotes the solution of the well-known trailing edge problem [4]. For the buoyancy correction terms
we obtain the linearized triple deck problem:

us∆u2,X + ∆u2us,X + vs∆u2,Y + u2,Y ∆v2 = −∆p2,X + ∆u2,Y Y , ∆u2,X + ∆v2,Y = 0 (5)

with the interaction law

∆p2 = As(X) − (1 + h(−X))as|X |1/3 +
1

π

∫
∞

−∞

∆A′

2(ξ) +
√

3asξ
1/3h(ξ)

X − ξ
dξ. (6)

Here X = xRe3/8 and Y = yRe5/8 denote the lower deck variables, respectively. The leading order term of the
displacement thicknessAs has the expansionAs ∼ asX

1/3 forX → ∞. At the plateX < 0, Y = 0 the no slip boundary
conditions hold and since ∆u2 and ∆p2 are antisymmetric with respect to Y = 0 we obtain the boundary conditions
∆u2(X, 0) = 0,∆p2(X, 0) = 0 in the wake (X > 0). The matching condition to the main deck is ∆u2(X,∞) =
∆A2(X) where ∆A2(X) is the correction of the displacement thickness due to buoyancy.
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Fig. 1: buoyancy induced pressure difference ∆p2
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Fig. 2: buoyancy induced displacement thickness ∆A2

Using Veldman’s method [5] the triple deck problem and the buoyancy correction problem (4)-(6) is solved numeri-
cally. In figures 1 and 2 the pressure correction and the displacement correction are shown, respectively. The pressure has
a discontinuity at the trailing edge. This is reflected in the vertical tangent of the displacement thickness ∆A 2 at X = 0.
Thus there is a flow around the trailing edge.
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