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Summary Near critical, i.e. transitional laminar separation bubbles are studied using triple deck theory. The investigation
is based on a local bifurcation analysis associated with the occurrence of non-unique solutions in the corresponding planar
steady flow calculations. This leads to a substantial simplification of the primary problem formulation allowing a largely
analytic description of the evolution of unsteady three-dimensional perturbations.

MOTIVATION

Earlier investigations of steady two-dimensional marginally separated laminar boundary layers [1], [2] in the limit of high
Reynolds-numbers Re have shown that the non-dimensional wall shear (or equivalently the negative non-dimensional
perturbation displacement thickness) is governed by a nonlinear integro-differential equation. This equation contains a
single controlling parameter T characterizing, for example, the angle of attack of a slender airfoil and has the important
property that (real) solutions exist up to a critical value T'. of T only. Recent investigations [3] of three-dimensional
unsteady perturbations of such a steady two-dimensional marginally separated laminar boundary layer with special em-
phasis on the flow behaviour near T'. have shown that the integro-differential equation which governs these disturbances if
. — T = O(1) reduces to a nonlinear partial differential equation - known as (forced) Fisher equation - as I" approaches
the critical value T'.. The bifurcation analysis of this problem associated with the non-uniqueness of the steady planar flow
thus leads to a significant simplification of the problem allowing, among others, a systematic study of the application of
devices used in boundary layer control and an analytical analysis of the conditions leading to the formation of finite time
singularities which have been observed in earlier numerical studies of unsteady two-dimensional and three-dimensional
flows. Also it was found possible to construct exact solutions which describe waves of constant form travelling in the
spanwise direction. These waves may contain singularities which can be interpreted as vortex sheets. The existence
of these solutions strongly suggests that solutions of the Fisher equation which lead to finite time blow-up can be ex-
tended beyond the blow-up time thereby generating moving singularities which can be interpreted as vortical structures
qualitatively similar to those emerging in direct numerical simulations of transitional laminar separation bubbles. This
was further supported by asymptotic analysis. Additionally, it could be shown that finite time singularities describing
the phenomenon of bubble bursting may occur in below-critical as well as above-critical situations. However, while this
phenomenon requires a certain finite perturbation level if I" < I, it is triggered by even infinitesimally small disturbances
if ' > T", where also self-sustained oscillations with periodically repeated bubble bursts (‘vortex shedding”) are possible.
Multiplicity of solutions and critical values of the controlling parameter beyond which steady state solutions do not exist
are a characteristic feature of marginally separated flows. However, similar phenomena do occur also in situations where
triple-deck theory applies, i.e. in situations where a fully attached boundary layer is forced to separate due to the presence
of a large adverse pressure gradient. Examples displaying such a branching behaviour include supersonic flows past flared
cylinders, [4], subsonic flows past compression ramps and subsonic trailing edge flows, [5]. Furthermore, in a recent pub-
lication [6] it was argued that bursting processes in transitional boundary layer flows share common properties which do
not depend on the specific problem under consideration. This suggests that an analysis similar to the one carried out for
marginally separated boundary layers should be possible also in the context of classical triple deck theory which is the
aim of the present paper.

SHORT OUTLINE

Specifically, we consider the example of the unsteady extension of subsonic planar ramp flow. Boundary layer separation
and non-uniqueness of the steady problem was found for negative ramp angles (convex corners), see e.g. [5]. Lett, z, y
and u, v denote suitably scaled quantities: time, coordinates in streamwise, wall normal direction and the corresponding
velocity components. The governing equations for the flow field in the lower deck of the interaction region located at the
corner supplemented with the interaction law then take the form
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with the boundary conditionsy = 0: u =v =0,y = o0: u ~y+ A, z — —oo: u ~ y. Here pis the pressure, A the
displacement function and f the local shape of the (smooth) corner. Near the critical value a. < 0 of the ramp angle «
the observed branching behaviour suggests a parabolic approximation of the corresponding field quantities:
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where we have introduced the perturbation parameter e* := a — a. — 0 and the appropriate scaling £ = £2¢.

The leading order problem O(°) is simply given by the steady version of (1) at the branching point & = a... Higher order
contributions O (g%%), i = 1,2 can be written in the form M#; = b;, where M denotes a singular linear operator matrix,
7; = (uq, v, pi, A;) the flow field perturbations and by =0, by (71, f2) the right hand sides. Since M affects the = and y
dependency of the field quantities only, one deduces 7 (x, y,) = c(t) 7(x,y). Furthermore, the right eigenfunction 7 of
M can be expressed in terms of a single function, the ‘perturbation’ stream function ¢
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The evolution equation for the shape function c(#) is obtained from the solvability condition (Fredholm alternative) at
O(g*), which finally yields
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Here 4 > 0 and g denote a constant and a forcing term associated with the evaluation of scalar products of left eigen-
functions of M and the right hand side b2. The special case of unforced flow characterized by fo(z,%) = fa(z),
g(t) = & = const > 0 and subjected to the initial condition c(2) = co allows for an analytical solution of (4)
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The stationary points ¢, ¢; = 1/d/p of (4) correspond to steady lower and upper branch solutions in the below-critical
case a > a., Fig. 1(a), whereas no steady state exists for the above-critical regime a < a., Fig. 1(b). Finite time
singularities are seen to develop if ¢o/c; < —1 under below-critical, but are found to be inevitable under above-critical
flow conditions. Most interestingly, in both cases the corresponding solution can be continued beyond the blow-up time.
In this context the important question arises, how these singularities can be resolved where the present theory breaks down
locally by taking into account effects which have been neglected so far. The time period of self-sustained vortex shedding
associated with above-critical flow conditions conveniently can be written in terms of the Strouhal-number

Str < Re'/*(a. —a)/?, Re— 0, (ae—a) = 01 . (6)

As can be shown, incorporation of three-dimensional effects indeed lead to nonlinear evolution equations of Fisher’s type
as in the case of marginally separated boundary layer flows. The properties of their solutions will be discussed in detail.
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Figure 1: (a) Perturbations of stable lower and unstable upper branch solutions. (b) Self-sustained bubble bursting.
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