EXTENDING THE GENERALIZED LOGARITHMIC LAW TO THE WALL
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Summary Physical arguments for the Reynolds number dependence of the mean velocity profile of canonical turbulent boundary layer
with zero pressure gradient are discussed. Based on these ideas the classical two-layer approach is extended and a generalized log law is
derived. This new law congists of a logarithmic and exponentia term. While the first term covers part of the usua overlap region, the
second term describes the inner part of the wake zone. All parameters appearing in the new law are Reynolds number dependent. The new
law is extended toward the wall employing amixing length approach that shows the correct y* *-dependence of the Reynolds stress close
to thewall.

PHYSICAL ARGUMENTS

For several years a new debate concerning the mean velocity profile of canonical turbulent boundary layers with zero
pressure gradient (ZGTBL) has taken place. Under this type of flow, afully developed turbulent boundary layer whichis
free of any effects from roughness, wall curvature and outer turbulence is understood. Mostly experiments are
interpreted to confirm or reject one or another theory. Therefore, we will start here with a short physical argument on
why a Reynolds number dependence of the mean profile of aZGTBL exists and persists until Re reaches infinity.

First Argument: Horse shoe vortices which are connected with the wall reach far into the outer region of the boundary
layer and fluid structures from the outer region dive deep into the boundary layer [1]. If viscous structures reside in the
so-called inertial sublayer of the ZGTBL, then such layer does not exist in reality.

Second Argument: The quantity that appears in the momentum equation is the Reynolds shear stress gradient and not
the Reynolds shear stress itself. The momentum balance for channel and pipe flow is:
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At the position where the shear stress has its maximum, the second term d t/ d y of eq. (1) becomes zero. In the vicinity
of this point, pressure force is only balanced by viscous force. The conclusion is that at least in channel and pipe flow
viscous forces are of importance in aregion that has been thought to be inertial [2].
Third Argument: Instead of a definition, mostly a syndrome is used to characterize a flow as turbulent. This turbulence
syndrome consists of several symptoms among them the energy cascade describing the energy transport from turbulence
production to dissipation [3]. This process can be observed in al y-regions of a ZGTBL meaning that throughout the
entire boundary layer friction is of importance to maintain this energy cascade.
All three arguments together crumble the arguments for a simple log law with constant parameters. A more sophisticated
mean velocity profile can be either derived based on first-principles employing Lie-group theory [4], or by extending the
classical two-layer approach to higher-Reynolds-number dependent terms [5].

THE GENERALIZED LOG LAW

Traditionally the ZGTBL is split into an inner and an outer layer. While in the inner zone friction dominates, in the outer
layer inertiais more important. It is assumed that each can be described with an asymptotic expansion.
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Here u” and y* denote the non-dimensional velocity wu, and coordinate y u/v of the inner layer, U is the non-
dimensional velocity (u-u)/u,, and n the non-dimensional coordinate of the outer layer, yi(3") and I'/(3") are gauge
functions depending on the Kdrmdn number & = & u/v. We generalize an idea of Afzal [6] and obtain after a
considerable amount of algebra the generalized log law for the inner layer follows:
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For 8 = co and n = 0 the simple log law Wlth an additional constant inside the logarithm is obtained. Due to this
constant the generalized log law does not show a straight line in the semi-logarithmic plot. For simplicity we assume that
in the vicinity of the wall the exponential term in eq. (3) is close to 1 and D; = D; and after rearranging eq. (4) follows.



This relation signifies that the parameters of the generalized log law kK and B are Reynolds number dependent (for
details see [5]). Note that the Karman number is strongly related with the momentum thickness Reynolds number Reg.
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MIXING LENGTH APPROACH FOR THE GENERALIZED LOG LAW

To extend eq. (4) to the wall, we employ a mixing-length approach originally introduced by Chapman & Kuhn [8] for
the simple log law. This mixing-length approach was reformulated (5a) to ensure that eq. (4) is satisfied. Taylor series
expansion (5b) at y* = 0 shows that the new approach has the correct y*2 - dependency in the vicinity of the wall.
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Analysing ZGTBL data from Osterlund [7] the parameters for the mixing-length approach were derived. It is found that
while K (fig. 1), G; and the damping factor A* depend on the Karman number the factor A (fig. 2) is nearly constant and
has a value of 6 * 10™ which is close to 4 - 8 * 107 given in [3].
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Fig. 2: Parameter A from eq. 6
Fig. 1: Kdrmén “constant” for generalized log law
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Fig. 3: Mean velocity profile (full line: calculation, Fig. 4: Normalized gradient of mean velocity profile
symbols: experiments from Osterlund [7]) (curves and symbols as fig. 3)
CONCLUSIONS

Physical arguments which explain the Reynolds number dependence of the mean velocity profile of a turbulent boundary
layer are discussed. Based on these ideas the two-layer approach is extended and a generalized log law is derived. A mixing-
length approach originally introduced for the simple log law is reformulated to extend the new log law to the wall. Taylor
series expansion shows that the new mixing-length approach has the correct y+3-dependence close to the wall.
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