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Summary The flow over a heated (or cooled) flat plate is shown to develop very short-scale instabilities independent of
Reynolds number. These are in the form of non-modal, algebraically, disturbances. Their existence presents a number
of challenges for the numerical simulation of such boundary-layer flows.

The equations governing the boundary-layer flow over a heated (or cooled) surface are
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with boundary conditions
u=v=T-Ty(x)=0 at y=0, u—1=T=p=0 as y— 0. (2)

Here (u,v,T,p) represents the basic velocity, temperature and pressure fields within the boundary layer, o is
the Prandtl number and Gy = GrRe /2 is a buoyancy parameter, y = Re™ Y/ 2y* is the boundary-layer variable
with Re the Reynolds number and Gr the Grashof number of the flow (see [2] for full details). In this study the
buoyancy parameter G is taken to be order unity, and thus the flows under consideration can be classified as
mixed forced-free convection boundary layers.

Recently Denier et al. [1] demonstrated that self-similar solutions of the boundary-layer equations (1) can
support algebraically growing instabilities whose growth rates are independent of Reynolds number. In this
case the boundary-layer field variables can be written in the form

(u, T,p) = (uo(n), 9o(n), g0 (1) + & (us (1), p1.(n), a1 (m)) + O(=*"), 3)

where n = y/v/2x is the similarity variable. The numerical solution of the eigenvalue problem for the growth
rate yields positive values for A for Go < 0. An asymptotic analysis of the limit Gg — 0~ demonstrates that
A — oo in this limit (full details can be found in [1]).

Although these results for self-similar flows are intriguing they assume particular algebraic forms for the surface
temperature which provide little insight into the flow over a heated surface that may be experimentally realisable.
However for non-self similar flows, non-modal instabilities still arise and they give rise to some serious difficulties
with regards the numerical solution of the boundary-layer equations (1). Figure 1 presents a plot of the spatial
development of the wall-shear stress for the flow over a flat plate with prescribed wall temperature given by
Ty(z) =e® 4+ (1 —e®), where 7 is treated as a parameter. The results in figure 1 are for different values
of the streamwise step-size Ax; we see that, irrespective of the size of Az, the results suffer a spontaneous
breakdown which is characterised by the appearance of sudden oscillations (closer inspection shows that these
oscillations are of a streamwise point-to-point nature). This behaviour is not dependent upon the plate far-
downstream being cooled (as is the case when 7 = —0.1) as evidenced by figure 1(b). Furthermore no such
breakdown is found for larger values of v, as can be seen in figure 1(c), where the solution proceeds downstream
with a far-downstream form being asymptotically approached.

To investigate the breakdown encountered in the cases v = 0.1 and —0.1 we adopt a procedure which is closely
analogous to that described above for the similarity states. We seek local solutions of the form

(f,9,9) = (fo(m; ), go(m; ), qo (m; ) + €(f1(m; %), g1 (m; 2), g1 (m; 2)) exp O(z) + O(€?), (4)

where the amplitude € is assumed small. Writing A\ = x0,, assuming that the basic flow (fo,g0,¢0) and
the disturbance amplitudes (f1, g1, ¢1) are slowly varying in x, the boundary-layer equations give, at O(e), an
eigenvalue problem identical to that which arises for the similarity forms. The results for this eigenvalue problem
are presented in figure 2.

It is immediately apparent that in both cases, a large (infinite) eigenvalue forms at a finite downstream location,
which therefore suggests that infinitely short wavelength disturbances are responsible for the numerical marching
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Figure 1: Spatial development of wall-shear stress for the case Go = 0.5, Az as shown. Cases (a) v = —0.1, (b)
~v=0.1 and (¢) v = 0.25 (wall temperature gradient also shown).
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Figure 2: Downstream variation of local eigenvalues for the case Go = 0.5, (a) y=—.1(b) y=.1
difficulties experienced with ¥ = —0.1 and v = 0.1. A similar eigenvalue searching procedure was adopted for the

case v = 0.25, but this failed to detect any positive values of A\, an observation entirely consistent with the lack
of difficulties encountered with the marching scheme in this case. Therefore in cases where these infinitesimal
wavelength unstable disturbances exist, marching schemes will (inevitably) fail. Indeed, the results shown in
figure 2 clearly indicate that downstream the wavelength of the disturbances increases, and it is therefore entirely
reasonable to conclude that these will only be detected by numerical marching schemes when the numerical grid
is of sufficient resolution to detect these disturbances.

The difficulties associated with the failure of marching schemes are a serious restriction on the usefulness of the
procedure. However these instabilities can be suppressed by treating the (parabolic) boundary-layer equations
(1) in a semi-elliptic manner by imposing (physically reasonable) downstream as well as upstream boundary
conditions. This type of procedure, in the context of parabolic systems, can be justified, insofar as it ‘selects’
the appropriate eigen-form to give the desired behaviour to the problem downstream. The results of just such a
calculation, employing Neumann boundary conditions at a finite x location downstream, are shown in figure 3.
The complete suppression of the small-scale instabilities is clearly observed.

Figure 3: Spatial development of wall-quantities for the case Gy = 0.5, (a) vy = —.1, (b) v = .1
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