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DYNAMO ACTION IN STEADY HELICAL PIPE FLOW
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Summary The steady, pressure-driven flow of a conducting fluid down a helical pipe of rectangular cross-section is shown to drive
a kinematic dynamo at moderate values of the magnetic Reynolds number,Rm. The asymptotic structure of the growing modes is
analysed asRm →∞. This is the first laminar, pressure-driven dynamo to be found.

INTRODUCTION

A velocity field giving rise to spontaneous magnetic field generation in a conducting fluid is known as akinematic dynamo.
Various simple examples of kinematic dynamos are known, but there are very few dynamically self-consistent examples,
in which the initial instability grows to a level where it interacts with the driving mechanism. In this paper we consider
configurations with helical symmetry, as originally formulated by [1] and [2]. The Ponomarenko [3] kinematic dynamo
can be regarded as a special case of helical flow. Here, a fully nonlinear laminar dynamo driven merely by a steady
pressure gradient along a pipe is described. The pipe has a helical shape with a rectangular cross-section, as shown in
figure 1. The work has relevance to the construction of laboratory dynamos [4]. Further details can be found in [6].

HELICALLY SYMMETRIC PIPE FLOW

Helical symmetry is a natural generalisation of two-dimensionality (ε = 0) and axisymmetry (ε → ∞.) In terms of
cylindrical polar coordinates(r, θ, z), a scalar function is helically symmetric if it depends only onr andφ = θ + εz,
whereε is a constant. The symmetry direction is designated by the Beltrami vector field,H, which is related to the unit
coordinate vectorseθ andez by

H = (ez − εreθ)/h
2 where h = (1 + ε2r2)1/2 and ∇∧H = −

2ε

h2
H.

The Navier-Stokes equations and the magnetic induction equation are invariant with respect to this symmetry, and thus
helically symmetric solutions to both can be found. The helically symmetric incompressible flowu can be conveniently
represented by two scalar functionsv(r, φ) andψ(r, φ) as

u = vH + H ∧∇ψ .

The governing equations forψ andv are geometrically linked.

Steady, pressure-driven laminar flow down a helical pipe was calculated in [5] as a function of the hydrodynamic Reynolds
number,Re. A solution is shown in figure 2 for an intermediate value ofRe. The two left-hand diagrams show the contours
of ψ andv, the cross-pipe and down-pipe flow. An important feature of the flow is that the cross-pipe component has
a stagnation point structure, with a weaker, counter-rotating portion in the lower right. The associated field stretching
influences dynamo action strongly.

DYNAMO ACTION

Magnetic fields with the same helical symmetry as the flow are sought. For the kinematic problem, the fieldB can be
decomposed as

B = (BH + H ∧∇χ)eλt

and the complex growth rateλ determined. Three cases are considered, when the medium outside the pipe is perfectly
conducting, perfectly insulating or of the same conductivity as the fluid. Only the perfectly conducting case is presented
here. The magnetic field is then zero outside of the pipe region, which has a constraining effect on the dynamo.

Pipes with no dynamo
In many cases the steady, pressure-driven pipe-flows do not in fact drive a dynamo for anyRm, except in the limit as
Re → ∞. This is because the cross-pipe flow is too strong. Such a case is the square pipe0.5 < r < 1.5, 0 < φ < 1.
If however, the cross-pipe flow is artifically set to zero, a kinematic dynamo occurs with a field structure which varies
rapidly in the direction tangential to the pipe as shown on the right in figure 1. The asymptotic structure of the modes as
Rm →∞ is analysed and agrees with the numerics.



Figure 1. Left: A helical rectangular pipe forε = 1, 0.5 < r < 1.5 and0 < φ < 2
3
π.

Right: Kinematic dynamo in a square pipe for a velocity field withψ = 0 and conducting walls.

Figure 2. Dynamo forRm = 173, Re = 2000 and the pipe of figure 1. From left to right: the cross-pipe flow,ψ, and the down-pipe
flow, v, the cross-pipe field,χ, and the down-pipe field,B. The inside of the pipe is on the left. The effect of field-stretching near the
separation point is pronounced.

Pipes with dynamos
For the taller pipe drawn in figure 1, with0.5 < r < 1.5 and0 < φ < 2

3π, a dynamo is found forRe = 2 × 103 and
Rm ∼ 100. In figure 2 the growing magnetic field is shown on the right alongside the cross-pipe flow. It is clear that the
stretching of the field at the separation line is an important feature of the dynamo process. The other vital ingredients are
the shear in the downpipe velocity and the torsional nature of helical symmetry which drives a diffusive term involvingB
in theχ-part of the induction equation, a “geometricalα-effect."

Computations of the time evolution and saturation of the dynamos described here are in progress and only preliminary
results are presented at the meeting. This work was supported by EPSRC grants GR/R71191/01 and GR/S87539/01 .
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