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Summary
We study the dynamo mechanism for a flow made of a ring of stationary helical vortices in an electrically conducting media. The

choice of this flow is related to the one obtained in thermal convection in a rotating shell which is also expected in the Earth’s outer-
core. This choice is also related to a sodium experiment, carried out in Grenoble, based on a spherical Taylor-Couette model.
Applying the mean field approach and relying on the second order correlation approximation we derive the mean electromotive force
(e.m.f.) produced by such a flow. We find that such a ring of helical vortices may produce, from an azimuthal mean magnetic field,
an azimuthal mean e.m.f. leading to the generation of a poloidal magnetic field.

INTRODUCTION

A ring of helical vortices is a common feature of thermal convection in a rotating shell. This fluid motion has been
reproduced experimentally and numerically [1] for specific ranges of parameters. The question to know if such a flow
is relevant to the flow in the Earth’s outercore is not answered yet. However there is some interest to investigate further
what kind of dynamo mechanism such a flow could produce. Besides, a sodium experiment in preparation in Grenoble
is designed to reproduce such a ring of vortices [2][3]. The device is made of a spherical shell in which there is a
rotating innercore. Between the innercore and the spherical shell there is liquid sodium, the whole device being in a
rotating frame. The difference of rotation between the innercore and the spherical shell produces a shear instability at
the innercore tangential cylinder leading to a ring of vortices. These vortices are helical because of Ekman pumping
due to the Ekman layers at the top and bottom and also because of the spherical shape of the top and bottom. We want
to know what kind of dynamo mechanism such a flow can produce.

DESCRIPTION OF THE WORK

The mean field approach
We assume a given flow u. Instead of calculating directly the magnetic field B by solving the induction equation

0B/ot=V x(uxB)+nV°B ()

where 7 is the magnetic diffusivity, we use the mean field approach, decomposing U =0T + U' and B =B + B' into
mean and fluctuating parts where the mean is defined as the average in the azimuthal direction ¢ where (s, ¢, z) are the

cylindrical coordinates. Then our aim is to calculate the mean electromotive force (mean e.m.f.) defined by & = U'xB".
We can show (see [4]) that it can be expressed in the form:
3B, (s)

£,(5)=4,,(5)B,(5) +Db,(5) =

where dand b are pseudo-tensors of rank 2 and 3. Then knowing & and b the dynamo problem is reduced to solving
the mean part of the induction equation:

oB = -

Esz(UxB)+ng+nVZB- (3)

Assumptions
Let us write the fluctuating part of the induction equation:

%: Vx(U'xB)+Vx(UxB')+Vx(u'xB") -V x(u'xB") + VB’ 4)

Then we consider the low conductivity limit (see [4]), leading to neglecting the term at the left hand side of (4). We
also consider that the second order approximation (see [4]) is valid (leading to neglecting the 3" and 4™ terms of the
right hand side of (4)). Finally, we consider that the mean e.m.f. does not depend on U (see [4]), assuming that it is
sufficient to consider U in (3) only.

Finally we come out with the following equation to solve:

7V?B'=-V x(u'xB). (5)
The velocity field
The flow is considered to be steady, z-independent and harmonic in . It is non-zero for 1— 6 <'s/ |O <1+ 6 where

|, is a typical length scale defined by the radius of the ring of vortices. The velocity is defined by
u=(us(s)sinme,u,(s)cosme,u,(s)cosme) and a typical example is given in figure 1.
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Tensor of second rank
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Solving (5) and replacing B” in & =U'xB", we find that a_, :IERnT 0 Rnf aw 0| with Rr:' = 077 > and
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RZ =20 "ylfand uZ being typical horizontal and vertical velocities, and with:
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u,(s)u, (s)+ u,(s)u, (s’ ))s ds'
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and where h (s,s') =——| —| for s'<sand h_(s,s')=——| — | for s<s'.
2m\ s 2m\ s
The tensor of third rank has also been calculated but cannot be included in this short summary.

One example

157
As an example, we consider the velocity profile defined by U, /U = 16 (1-£%)? cosme and

s-1
(ug,u, 0)/uf' =—e, x Vi with = 5(1-£%)°cosme and & = ra The s-profiles obtained for the three

coefficients @ are given in figure 2 in the case where dm = /2, corresponding to helical vortices with similar length
scales in the s and ¢ directions.
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Fig.1. Isolines of u, form=4.  Fig.2. The functions & & versus (S —1)/& for om = z/2and m=1, 2, 4, 8, 16

CONCLUSIONS AND FURTHER WORK
The coefficient a o0 being not zero and even dominant compared to the others, we can conclude that from an azimuthal mean

magnetic field an azimuthal mean e.m.f. is generated. Then this e.m.f. can generate a poloidal magnetic field. The generation
of a azimuthal field from a poloidal field by some differential rotation U could then close the loop. We are now considering
the case where the flow is z-dependent. In the future we shall examine the influence of U onto the mean e.m.f.
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