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1. Introduction. According to “anti-dynamo” theorems [1, 2], 
the axisymmetric dynamo is impossible.  This result seems 
paradoxical because observed magnetic fields are nearly 
axisymmetric as for stars and planets [3] so for cosmic jets 
erupting from active galaxy nuclei [4].  The paradox was 
bypassed in two ways.  Braginsky showed that even a slight 
asymmetry is sufficient for the dynamo to occur [2].  
Another bypass is that a flow being unsteady and three-
dimensional at small scales can generate a nearly steady and 
axisymmetric large-scale magnetic field [3]. 
 In contrast to these bypasses, the present study deals 
with exactly axisymmetric steady states and shows that a 
magnetic field appears in a magnetic-free conical flow via a 
pitchfork bifurcation.  This seemingly contradicts to the anti-
dynamo” theorems, however, there is no contradiction 
indeed as conditions of the theorems do not hold for 
conically similarity flows.   
 Conical similarity is a feature of a wide family of solutions 
of the Navier-Stokes equations. This family includes the 
Schlichting, Landau, and Squire swirl-free round jets, the 
Long swirling, thermal convection near a point source of 
heat and gravity [5], and many other flows.   
 Streamlines and magnetic lines are open in a conical flow: 
they go to and from infinity or the singularity point.  This 
feature is crucial as Cowling [1] emphasized that his anti-
dynamo theorem is not applicable for a flow with open lines. 
Also, the proof by Braginsky [2] based on the condition that 
the magnetic induction, H, decays at infinity as r−3 or faster 
is not applicable to conical flows where both H and v decay 
weaker being proportional to r−1; r is the distance from the 
flow origin.   
 Thus, on one hand, the theorems do not rule out a 
possibility of dynamo occurrence in conical flows.  On the 
other hand, an MHD bifurcation in a conical flow can be not 
necessarily interpreted as dynamo.   
 
2. Reduction to ODDE. An advantage of the conical 
similarity is the reduction of governing equation to ordinary 
differential equations (ODE) that radically eases the analysis.  
  The conical similarity means that  

{vr,vθ,vφ} = νr−1{u,υ/sinθ, Γ/sinθ}, T  = T∞+ γr−1ϑ, 

p=p∞+ρ∞ν2r−2q, {Hr,Hθ,Hφ} = hνr−1{R,Θ/sinθ,Φ/sinθ},  (1)  

where p is pressure, T is temperature, {vr,vθ,vφ} and 
{Hr,Hθ,Hφ} are the velocity and magnetic field components in 
spherical coordinates {r,θ,φ} (Fig. 1), ρ is density, ν is 
viscosity, h is a scale constant, and γ characterizes the heat 

flux from the origin. Dimensionless functions u,υ,Γ,ϑ, q, R, 
Θ, and Φ depend only on x = cosθ.   
 Suppose that a point source of gravity is  located at the 
coordinate origin and neglect self-gravitation of the ambient 
fluid.  This yields that the acceleration due to gravity is g = 
−er δ/r2.  Here er indicates the outward radial direction, and δ 
characterize the strength of g.  We apply the Boussinesq 
approximation, ρ/ρ∞ =  1−β(T−T∞), β is the coefficient of 
thermal expansion. 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic of a flow near a point source 1 of gravity 
g and heat flux q with accretion plane 2. Typical stream 3 and 
magnetic 4 lines are shown.  
 
 Substituting (1) reduces the MHD equations [1] to: 
 
 (1−x2)ψ′+2xψ−½ψ2 = F−Θ2/2,   (2a) 
 (1−x2)F ′′′ = Raψϑ+2ΓΓ ′−2ΦΦ′, (2b) 
 (1−x2)Γ ′′ = ψΓ ′−ΘΦ′, (2c) 
 (1−x2)ϑ′ = Prψϑ,  (2d) 
 (1−x2)Θ′′ = Bt(ψΘ′−ψ′Θ),         (2e) 

(1−x2)Φ′′=Bt[ψΦ′−ΘΓ′+2(ψ′Φ−Θ′Γ)+ 
2x(ψΦ−ΘΓ)/(1−x2)], (2f) 

 
where ψ = −υ (u = −ψ′, R = Θ′);  Ra = βγδ/(κν), Pr = ν/κ, and 
Bt = ν/νm are the Rayleigh, Prandtl, and Batchelor numbers, 
respectively; κ and νm are the thermal and magnetic 
diffusivities.   
  
3. MHD bifurcation in the bipolar swirling jet.  At Ra=0, 
consider a vortex-sink motion prescribed on the accretion 
plane (2 in Fig. 1), i.e., the boundary conditions at x = 0 are: u 
= Rep, υ = 0, and Γ = Res, where Rep and the swirl Reynolds 
number, Res, characterize the accretion and vortex strengths.  
The velocity on the axis is bounded if ψ=F=F′ =Γ= 0 at x = 1.  
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The magnetic field must satisfy the conditions, Φ(0)=Θ′(0)=0 
(symmetry) and Φ(1)=Θ(1)=0  (regularity). 
 This problem has a solution with Θ=Φ≡0, that describes a 
swirling flow that converges (for Rep < 0) to the axis near the 
disk and goes away from the origin along the axis (curve 3 in 
Fig.1).  As the accretion (−Rep) increases, a magnetic field 
appears via the pitchfork bifurcation, as Fig. 3 shows. The 
abscissa, Al1/2=0, is the axis of plot symmetry and solutions 
with Al1/2>0 and Al1/2<0 have just opposite direction of the 
magnetic field; Al is the magnetic-to-kinetic energy ratio on 
the disk 
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Figure 2. Bifurcation of magnetic field in a vortex-accretion 
flow.  
 
 We see that the MHD bifurcation is supercritical in a swirl-
free (Res=0) flow and becomes subcritical when the swirl is 
sufficiently strong (e.g. at Res=20). Arrows show the time-
evolution direction of a disturbed magnetic field.  The 
presence of fold point F means that as the accretion 
increases and decreases, transformations between magnetic-
free and MHD states occur via hysteretic transition in a flow 
with a strong swirl.    
 
4. MHD bifurcation in the buoyancy flow. Now consider a 
bipolar outflow that develops via onset of thermal 
convection [5].  It appears that not only the convection, but 
also a magnetic field bifurcates in a converging-to-the-axis 
flow as Fig. 3 shows at Bt = 0.18.  Line E corresponds to the 
equilibrium state of rest. At point T (Ra = 24), the trans-
critical bifurcation of convection occur. No MHD bifurcation 
occurs in the diverging flow (lower inset and curve La at 
ψmin<0).  The converging flow (upper inset) is unstable 
(broken curve FT). As ψmax reaches 4 (at fold point F), the jet 
velocity becomes unbounded and the fluid-sink singularity 
develops on the axis.  In this singularity flow (curve Tu), the 
MHD (supercritical pitchfork) bifurcation occur at point B.  
In the MHD flow (curve MT), the magnetic field grows, 
consumes the kinetic energy, and suppresses the sink 
singularity at point L as Ra increases.  
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Figure 3. Bifurcations in a buoyancy flow. 

 
 Curve tl is a boundary between regular (below) and 
singular (above) flow states. Curve ML corresponds to a 
regular MHD flow. It is interesting that this solution branch 
is remote from other regular flow states. 
 
5. Conclusions. This study has shown that self-sustained 
magnetic fields can develop via bifurcation in jet-like flows. 
A necessary condition for the MHD bifurcation is  the 
presence of accretion in a flow.  In the swirl-free accretion 
flow, the self-induced magnetic field eventually (as −Rep 
increases) suppresses the bipolar jet, but the jet can remain 
strong in the vortex-accretion flow (§3). In the buoyancy-
induced flow (§4), the jet remains strong even in s swirl-free 
MHD state. Thus, our results reveal that the bifurcation of 
magnetic field is typical of jet-like flows and, therefore, can 
contribute to the development of long-range magnetic fields 
in cosmic jets as well. 
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