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1. Introduction. According to “anti-dynamo” theorems|[1, 2],
the axisymmetric dynamo is impossible. This result seems
paradoxical because observed magnetic fields are nearly
axisymmetric as for stars and planets [3] so for cosmic jets
erupting from active galaxy nuclei [4]. The paradox was
bypassed in two ways. Braginsky showed that even a slight
asymmetry is sufficient for the dynamo to occur [2].
Another bypass is that a flow being unsteady and three-
dimensional at small scales can generate a nearly steady and
axisymmetric large-scale magnetic field [3].

In contrast to these bypasses, the present study deals
with exactly axisymmetric steady states and shows that a
magnetic field appears in a magnetic-free conical flow viaa
pitchfork bifurcation. This seemingly contradictsto the anti-
dynamo” theorems, however, there is no contradiction
indeed as conditions of the theorems do not hold for
conically similarity flows.

Conica similarity is afeature of awide family of solutions
of the Navier-Stokes equations. This family includes the
Schlichting, Landau, and Squire swirl-free round jets, the
Long swirling, thermal convection near a point source of
heat and gravity [5], and many other flows.

Streamlines and magnetic lines are open in a conical flow:
they go to and from infinity or the singularity point. This
feature is crucial as Cowling [1] emphasized that his anti-
dynamo theorem is not applicable for aflow with open lines.
Also, the proof by Braginsky [2] based on the condition that
the magnetic induction, H, decays at infinity as r'® or faster
is not applicable to conical flows where both H and v decay
wesaker being proportional to r'%; r isthe distance from the
flow origin.

Thus, on one hand, the theorems do not rule out a
possibility of dynamo occurrence in conical flows. On the
other hand, an MHD bifurcation in a conical flow can be not
necessarily interpreted as dynamo.

2.ReductiontoODDE.  An advantage of the conical

similarity is the reduction of governing equation to ordinary

differential equations (ODE) that radically easesthe analysis.
The conical similarity means that

{ViVeVi} =nri{uu/sing, Gsing}, T =Ty+ g7,
p=py+ N1 2, {H,He,Hi } =hnr {RQ/sing,F /sing}, (1)

where p is pressure, T is temperature, {v,vqV:} and
{H:,Hg,H: } are the velocity and magnetic field componentsin
spherical coordinates {r,qf} (Fig. 1), r is density, nis
viscosity, h is a scale constant, and g characterizes the heat

flux from the origin. Dimensionless functions u,u,GJ, q, R,
Q, and F depend only on x = cosq.

Suppose that a point source of gravity is located at the
coordinate origin and neglect self-gravitation of the ambient
fluid. Thisyields that the acceleration due to gravity isg =
-e dr% Here e indicates the outward radial direction, and d
characterize the strength of g. We apply the Boussinesq
approximation, r/ry = Xb(T-Ty), b is the coefficient of
thermal expansion.
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Figure 1. Schematic of aflow near a point source 1 of gravity
g and heat flux g with accretion plane 2. Typical stream 3 and
magnetic 4 lines are shown.

Substituting (1) reduces the MHD equations[1] to:

(1-X®)y ¢+2xy - Yoy 2= F- Q7/2, (2a)
(1- X°)F ®t= Ray J +2GG ¢ 2F F ¢, (2b)
(1-xG®=yG¢ QF ¢ (2c)
(1-x3J ¢=PryJ, (2d)
(1- X*)Qae=Bt(y Q¢ y 1Q), (2e)
(1- X°)F &=Bt[y F ¢ QG&+2(y ¢F - QIO+

2x(y F- QG)/(1- X)), ()

wherey =-u (Uu=-y ¢ R=Q®; Ra=bgl(kn), Pr=n/k, and
Bt = n/n,,, are the Rayleigh, Prandtl, and Batchelor numbers,
respectively; k and n, are the thermal and magnetic
diffusivities.

3. MHD bifurcation in the bipolar swirling jet. At Ra=0,
consider a vortex-sink motion prescribed on the accretion
plane (2in Fig. 1), i.e., the boundary conditions at x =0 are: u
=Re, u =0, and G= Re,, where Re, and the swirl Reynolds
number, Re,, characterize the accretion and vortex strengths.
The velocity ontheaxisisbounded if y =F=F¢=G=0atx = 1.
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The magnetic field must satisfy the conditions, F (0)=Q%0)=0
(symmetry) and F (1)=Q(1)=0 (regularity).

This problem has a solution with Q=F°0, that describesa
swirling flow that converges (for Re, < 0) to the axis near the
disk and goes away from the origin along the axis (curve 3 in
Fig.1). As the accretion (- Re,) increases, a magnetic field
appears via the pitchfork bifurcation, as Fig. 3 shows. The
abscissa, AI*?=0, is the axis of plot symmetry and solutions
with AI¥>>0 and Al?<0 have just opposite direction of the
magnetic field; Al isthe magnetic-to-kinetic energy ratio on
the disk
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Figure 2. Bifurcation of magnetic field in a vortex-accretion
flow.

We see that the MHD bifurcation is supercritical in aswirl-
free (Re=0) flow and becomes subcritical when the swirl is
sufficiently strong (e.g. at Re=20). Arrows show the time-
evolution direction of a disturbed magnetic field. The
presence of fold point F means that as the accretion
increases and decreases, transformations between magnetic-
free and MHD states occur via hysteretic transition in aflow
with astrong swirl.

4. MHD bifurcation in the buoyancy flow. Now consider a
bipolar outflow that develops via onset of thermal
convection [5]. It appears that not only the convection, but
also a magnetic field bifurcates in a converging-to-the-axis
flow as Fig. 3 shows at Bt = 0.18. Line E corresponds to the
equilibrium state of rest. At point T (Ra = 24), the trans-
critical bifurcation of convection occur. No MHD bifurcation
occurs in the diverging flow (lower inset and curve La at
Y min<0). The converging flow (upper inset) is unstable
(broken curve FT). ASY ma reaches 4 (at fold point F), the jet
velocity becomes unbounded and the fluid-sink singularity
develops on the axis. In this singularity flow (curve Tu), the
MHD (supercritical pitchfork) bifurcation occur at point B.
In the MHD flow (curve MT), the magnetic field grows,
consumes the kinetic energy, and suppresses the sink
singularity at point L as Ra increases.
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Figure 3. Bifurcationsin a buoyancy flow.

Curve tl is a boundary between regular (below) and
singular (above) flow states. Curve ML corresponds to a
regular MHD flow. It is interesting that this solution branch
isremote from other regular flow states.

5. Conclusions. This study has shown that self-sustained
magnetic fields can develop via bifurcation in jet-like flows.
A necessary condition for the MHD bifurcation is te
presence of accretion in a flow. In the swirl-free accretion
flow, the self-induced magnetic field eventually (as - Re,
increases) suppresses the bipolar jet, but the jet can remain
strong in the vortex-accretion flow (83). In the buoyancy-
induced flow (84), the jet remains strong even in s swirl-free
MHD state. Thus, our results reveal that the bifurcation of
magnetic field is typical of jet-like flows and, therefore, can
contribute to the development of long-range magnetic fields
in cosmic jetsaswell.
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