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Summary  Although all macroscopic grains are frictional, most of the theoretical studies of granular gases have focused on models of
frictionless spheres. The success of these models in explaining many experimental results raises the question of the role of frictional
restitution in the dynamics of granular gases. The weak frictional limit is explored here. Using the pertinent Boltzmann equation we
derive hydrodynamic eguations of motion (as it turns out, one needs to extend the list of hydrodynamic fields for this purpose) and
study some of their consequences. One of these consequencesis that the homogeneous cooling state is highly non-Gaussian. Another
consequence is the long memory associated with the rotational degrees of freedom, when weakly coupled to trandlation.

EXTENDED DESCRIPTION

In spite of the omnipresence and undeniable importance of friction in granular matter (see e.g., [1]), most models of gran-
ular gases consist of frictionless particles, mostly spherical in shape. Although frictional particles have been consideredin
simulations of granular gases, cf. e.g., [2] and references therein, very few theoretical studies of frictional granular gases
can be found in the literature, cf. e.g., [3, 4, 5, 6]. Perhaps the fact that frictionless models have been rather successful
in explaining many of the observed phenomenain granular gases [7], or the difficulties one encounters in the theoretical
study of frictional granular gases are responsible for this state of affairs, and perhaps there are other reasons. In any case,
we believeit isimportant to study the full kinetics and hydrodynamics of frictional granular gases.

In previous kinetic theoretical based studies of the of granular hydrodynamics [3, 5] it is assumed that the basic distri-
bution function is Maxwellian in both the velocity and angular velocity (and usually different rotational and translational
temperatures are allowed for), and corrections due to gradients are identified (on the basis of symmetry). The assumed
distribution function is substituted in the Enskog equations, resulting in a closure for the constitutive relations. The above
Maxwellian distribution corresponds (when both the rotational and transation temperature are taken to be equal) to the
limit of rough molecules, in which there is equipartition between the rotational and translational kinetic energies. Our
goa hereisto study granular gases near a different limit, i.e., the smooth limit (as frictionless grains comprise the model
most studied in the literature), and devel op a systematic approach to the problem, i.e., a perturbative scheme

The model considered here is a monodisperse systems of spherical grains. In addition to the velocities of the particleswe
define a ‘spin variable', s;, whose dimension is that of velocity, by s; = gw,-, where d is the diameter of a sphere and
w; isitsangular velocity. The binary collisions of these spheres are defined similarly to refs. [5, 8]. The single particle
distribution function, f, depends on space (r), time, ¢, the velocity, v, and spin, s, degrees of freedom, and it satisfies
and appropriate Boltzmann equation. The latter can be studied by employing the Champman-Enskog expansion in order
to obtain hydrodynamic equations of motion. The basic premise of this expansion is that the dependence of the single
particle distribution function on space and time can be replaced by a dependence on the ‘slow’ fields. In other words,
when the temporal resolution exceeds afew mean free times, and the spatial resolution exceeds afew mean free paths, the
(local) dynamics of the particlesis only constrained by the slowly changing fields. Therefore, the slow (or hydrodynamic)
fields should be those that correspond to conserved (or nearly conserved) entities. In the case at hand, the momentum
and the number of particles (or the total mass) are conserved, hence the momentum density and the particle number (or
mass) density are hydrodynamic fields. The granular temperature corresponding to the translational degrees of freedom is
not conserved, but it is nearly conserved in the near-elastic, near-frictionless case, and is therefore a hydrodynamic field.
In the same limit the spin degrees of freedom are decoupled from the trandational degrees of freedom and the number
density corresponding to each value of the spin, s, is conserved as well, hence the infinite set of spin dependent number
densities should be taken as hydrodynamic fields. In the rough limit rotation is strongly coupled to translation and the total
(trandlational plus rotational) energy is conserved in each collision. Therefore, in the latter case one only needs the total
energy, momentum and mass densities as hydrodynamic fields. However, no harm is done by exaggerating the number of
hydrodynamic fields, hence even in this case one can use the above set of spin dependent densities (which can be used to
calculate the rotational temperature as the average of the square of the of the fluctuating spin), and in this case one can
retain the tranglational granular temperature aswell. All in all, the general set of hydrodynamic fields that is appropriate
for al casesisthat corresponding to the smooth elastic limit.

There are several ways to design a perturbative expansion for the distribution function in the present case; each of the
expansions uses a different zeroth order limit, around which it is defined. It is preferred that thislimit is an exact solution
of the Boltzmann equation. In the realm of smooth frictionless granular systems there have been two such expansions.
Onewas|[9] the equilibrium state corresponding to the limit of zeroinelasticity (e = 1) and no-gradients(i.e., the Knudsen
number, K, was taken to be zero) and, the other [10] employed the (local) homogeneous cooling state (with K = 0) as
a zeroth order. These two approaches agree with each other in the common domain of validity (near elastic collisions)
and both can be used as zeroth order solutions in the presence of weak friction. Another limit at which a solution of the
Rolt7mann eqiiation can be identified icthat of rotioh molectiles in which cacethereic a 7eroth order <oliition in which the



rotational and tranglational temperature are equal to each other. The latter has been employed to describe molecules, cf.
[11]. One of the important differences between the smooth particle limit and the rough limit is that in the former the spin
degrees of freedom are decoupled from the translational degrees of freedom to zeroth order in the interaction, and serve
as independent variables, whereas in the latter case the spin degrees of freedom are strongly coupled to the trandl ational
degrees of freedom (the conserved energy in collisionsis the sum of the translational and rotational energies) and thusthe
spin degrees of freedom are not independent. For this reason, and since the smooth limit isthe most studied case, we chose
to focus on the smooth equilibrium limit. This choice till leaves several possibilities. Below, we choose to study the case
of finite Coulomb friction and near frictionless coefficient of tangential restitution. In this case, the small parameters are:
the degree of normal inelasticity [9], the degree of tangential inelasticity, and the Knudsen number. Notice that the studied
systems can be regarded as a mixture of particles characterized by their respective spins.

The results of the application of the Chapman-Enskog expansion yield constitutive relations, which we have devel oped to
second order in the small parameters. These will be presented elsewhere. Here we specialize to a simple case, the near
frictionless homogeneous cooling (i.e., unforced) state. In this case the hydrodynamics equations reduce to:
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where, T isthe granular temperature, Trot istherotational granular temperature, S isthe average spinfield, and 7 measures
time in units of accumulated collisions. . Eq. (1) islinear in T, Tyot and S2. The three eigenvalues of this system are

negative. The long-time decay rate of T' and Tyot follows Haff's law, and: lim;_, o @ = r, where r the value of the

number r depends on the parametersin Eq.(1). Also: limy_, o S—TZ = 0. Since S? decaysto zero faster than 7 and Tyt it is
justified to consider the asymptotic time dynamics for the case S = 0. To simplify matters even further, we shall assume
that the spindistribution, n(s, t), isisotropic, i.e., n(s, t) dependson the scalar s (and time) alone. Itis convenient to define
aspin density, N(s,t), by N(s,t) = 4ws®n(s,t). Clearly: [ N(s,t)ds = n,and [ s2N(s,t)ds = T rot(t). One can
show that IV satisfies a spin diffusion equation: 2¥ = 2 [AsN + (2T + Trot) A2 (2 — 2N) + A; (s?%Y — 2sN)].
In the large time limit, this equation possesses a scaling solution of the form N (s, ) = %F({) where ( = ﬁ with
Trot/T replaced by its asymptotic value r. In this limit the above equation reduces to F¢ + %C + C% (C-2) =0,
where C isafixed parameter. It is easy to check that the normalizable solution of the last equation satisfies F' (¢) ~ ¢2~¢

i.e. the distribution decays as a power law: n (s) ~ ;a7 (\/LT) . For instance for a degree of inelasticity, e = 0.1

and a similar degree of frictional inelasticity, F (¢) ~ ¢=5-935. Therefore, contrary to assumptions in most theories of
frictional granular matter, the spin distribution function in the considered case is very different from Maxwellian. Asthe
hydrodynamics was devel oped on the basis of the Boltzmann equation, (dilute case), the stress tensor (being the average
of a symmetric entity) is symmetric, i.e., one does not obtain a micropolar theory. Finite density corrections will be
considered elsewhere. Many open questions still remain, among them the effects of friction on shear and vibrated flows,
the matching of the expansion presented above with results obtained from an expansion around the rough limit, and, in
general, the effects of friction in many types of granular flows.
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