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Summary This is an extension of previous work by others, dating back some thirty years on more (1), on maximum-entropy estimates
of the statistical distribution of quasi-static contact forces in granular assemblies.

The precise form of the probability density is shown to depend on the statistical weight assigned to elements in the state space of contact
forces or displacements. A brief review is given of comparisons with experiment and computer simulations. The formal methods of
statistical thermodynamics are employed to establish a virtual thermomechanics. without reference to a granular temperature. This
leads to an elastoplastic work function, of the type appearing in various phenomenological models of complex solids and fluids. The
possibility of non-convexity, leading to continuum- and meso-scale material instability, is discussed.

EXTENDED SUMMARY

A major challenge in granular mechanics is to establish reliable connections between continuum-level phenomenological
models and micromechanical models, which is essentially a problem in statistical mechanics. This accounts in part for the
long-standing efforts to apply the maximum-entropy principle, not only to granular dynamics with large kinetic energy,
but also to granular statics (11; 1). In systems devoid of a classical thermodynamic structure, the entropy can be taken
as information-theoretic Shannon entropy, and the maximum-entropy principle provides one type of maximum-liklihood
estimate for the statistics of systems with prescribed macroscopic averages as global constraints . The purpose of the
present article is to establish certain qualifications and ramifications anticipated in previous articles by this author (4; 2).
Bagi’s (1) maximum-entropy estimates for the interparticle contact-force distribution exhibit the exponential behavior at
large force observed in numerous experiments and numerical simulations (10; 9). Hence, the exponential distribution
may be a robust statistical feature of static granular packings, independently of the precise details of force transmission,
in which case it cannot be taken as an unequivocal confirmation of various load-diffusion models proposed in the soil-
mechanics and physics literature. This conclusion is further supported by the maximum-entropy estimates of (7) on
contact forces in granular assemblies subject to the Coulomb condition (µfn ≥ |ft|) at particle contacts. It can be shown
that local mechanical constraints of this type can be treated as a restriction on state-space weight, without jeopardy to the
exponential distribution of large forces (2)

Maximum Entropy with Constant Stress
With the standard expression for (Cauchy) stress (1; 7; 4)

T = nc〈M(f , l)〉, with M(f , l) := −f ⊗ l, (1)

wherenc denotes contact number density,f the vectorial contact force,l the branch vector connecting centroids of adjacent
grains, andM the associated force dipole.
The maximization of entropy:

S[P ] = −〈 logP 〉 = −
∫

Ω

P logPdΩ (2)

based on a state-space measuredΩ and subject to stationarity of Eq. (1) yields the canonical distribution

P (f , l) = Z−1 exp {Λ :M} = Z−1 exp {−f ·Λ·l} , (3)

where the colon denotes contracton of a tensor product and Z thepartition function

Z(Λ) =
∫

Ω

exp {−f ·Λ·l} dΩ(f , l), (4)

a function of the Lagrange multiplier (tensor)Λ = (λij).
As discussed by the present author (4; 2), the actual probability distribution inf , l depends on the statistical weight factor
J connectingdΩ and the cartesian volume elementdfdl. Employing an argument based on conservation of power-law
elastic contact energydΩ ∝ fν−1df , one finds a Poisson distribution of force magnitudef for frictionless spheres (4; 2):

ρ(F ) = ν
(νF )
Γ(ν)

ν−1

e−νF , whereF =
f

〈 f 〉
, (5)



previously obtained by Bagi (1). Figure 1 of (4) shows a favorable comparison of Eq. (5) to experiment and numerical
simulation, except for a troubling discrepancy arising from "dead" contacts with zero force in experiment and simulation.

Virtual Thermodynamics
The standard thermodynamic approach (6), according to which all macroscopic properties are derivable fromZ, gives

T = ∂Λψ, with ψ(Λ) = −nc logZ, (6)

with ψ andΛ assuming the respective roles of free energy and (infinitesimal) displacement or velocity gradient.
Eq. (6) represents a "virtual" thermodynamics involving no explicit reference to temperature. In the limit of perfectly rigid
particles the energyψ must be regarded as purely extrinsic, arising from external work done by particle rearrangement.
For frictional sphere assemblies, the real (as opposed virtual) thermodynamic validity of Eq. (6) appears to hinge on
some type of elastic-plastic decomposition analogous to that employed in well-known incremental plasticity theories. For
example, if we assume that the contact force can be written as a linear combinationf = fE + fD of elastic and dissipative
forces and that the state space measure factors as

dΩ(fE , fD, . . .) = dΩ(fE , . . .)dΩ(fD, . . .) (7)

then Eq. (6) decomposes linearly into an elastic strain energy and a dissipation function, of the form assumed in certain
phenomenological treatments of inelasticity (3; 5). However, the standard elastic-plastic version requires a treatment
of kinematics like that given in (1), which results in a complimentary energy function (2) resembling that employed
for plastic flow rules. Given the highly nonlinear nature of frictional-elastic contacts, it is not clear that the necessary
statistical decoupling of force or displacement is realized in the typical granular medium.
There is a further interesting interesting question as to the possible non-convexity of relations such as Eq. (6). In particular,
he associated bifurcations might serve to describe strain localization, in the form of shear bands, or stress localization in
the form of force chains (4; 2), as a kind of virtual-thermodynamic phase transition.
Given the success of the maximum-entropy method in describing certain aspects of the force distribution in granular
assemblies, further investigation of the validity of the above thermodynamic formalism would seem to warranted.
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