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Summary The classical result of Einstein for the effective viscosity of a dilute suspension of solid spheres in an arbitrary infinite
Stokes flow is extended to account for the effect of a nearby wall. It is found theoretically that the presence of a wall amounts to a slip
velocity for the suspension on a macroscopic scale. This slip velocity is obtained in term of the stresslet on a sphere, which is calculated
analytically with the method of bipolar coordinates. Because of walls, the effective viscosity is reduced in a homogeneous suspension,
in qualitative agreement with experiments. For a bounded suspension, the expression for the viscosity depends on the flow field, even
in the first order in volume fraction. Moreover, the sensitivity of the effective viscosity to the inhomogeneity of the suspension is higher
for a Poiseuille flow than for a shear flow.

INTRODUCTION

An essential theoretical result for the mechanics of unbounded dilute dispersions of spheres is the expression for the
effective viscosity valid at order ¢, where ¢ is the volume fraction (Einstein [1]). Later experiments performed in tubes
showed a surprising result: the effective viscosity is reduced as compared with Einstein’s result when the tube diameter
decreases (see e.g. [2] and references herein). However, this effect was not fully explained theoretically. Later theories [3]
[4] modelled this phenomenon for a homogeneous suspension in a shear flow: they showed that the suspension is slipping
on walls on the macro-scale, thereby reducing the effective viscosity. The theory presented here accounts for the more
general case of an inhomogeneous suspension in a Poiseuille flow between parallel planes. It will be shown that when
the sphere radius is small compared with the distance between planes, considering the effects of the two walls separately
provides a good approximation for the effective viscosity.

THEORY FOR THE EFFECTIVE VISCOSITY OF A SUSPENSION NEAR A WALL

Consider a dilute suspension of neutrally buoyant solid spherical particles with radius a flowing along a plane wall. The
volume fraction is low: ¢ = (47/3) a®ng << 1, where ng is the number of particles per unit volume in the bulk of the
suspension, that is far from the wall. Thus, hydrodynamic interactions between particles will be neglected. On the other
hand, interactions between individual particles and the wall will be taken into account. The concentration distribution
normal to the wall is general: n(x) = nogw (x) = nog(x)H[d(x) — a], where g is an arbitrary function and d(x) is the
distance from the particle center at x to the wall. The Heaviside function H account for the non overlapping of particles
with the wall. Equations for the flow (v, p) valid in each point of a suspension of N particles centered atx?, (3 = 1--- N)

may be written as [5]:
N
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using induced forces on the surfaces of the particles as defined by f(x,x%, W) = [0/ - n] 6(|x — x’| — a), where o/
is the stress tensor, n the normal outward unit vector on a sphere and ¢ is the Dirac function. The no-slip condition on
the surfaces of particles is taken into account by these forces. The no-slip condition v = 0 on the wall should be applied
explicitly . Particles positions are random and effective properties of the suspension are considered here in the sense
of ensemble averages. For a distribution (generalized function), this average < . > is defined for a suspension of non
interacting particles as:

(<q>9) = /V (4, 0) (x0)n(x0)dxo

where V' is the volume of the whole suspension and ¢ denotes a test function. This problem is solved using a matched
asymptotic expansions approach (like in [6]). In an inner region of order a close to the wall, equations (1) are averaged
and the no-slip condition on the wall < v >= 0 applies. In an outer region, far from the wall, induced forces average to
zero for neutrally buoyant particles. Then averaging (1) simply gives the Stokes equations and their solution is the fluid
velocity profile far from the wall. Only the boundary condition on the wall has to be replaced by a matching condition
with the solution in the inner region. It is found that the resulting condition for the outer flow amounts to a slip velocity on
the wall. Two different flow profiles are considered here, in view of possible experimental determinations of the effective
viscosity: a shear flow and a Poiseuille flow. The Poiseuille flow can be written as the sum of a shear flow v2° = k2 and
a quadratic flow v2° = ko22. As an example, we present here the suspension flow profile as a result of matching for the
case of the quadratic flow:

Vo(Z) = Z? + Uy where Uy = f’%’ / Zf.(Z)dZ
T Jo



All quantities are dimensionless: V,, = (v,)/koa?, Z = z/aand f,(Z) = Jeens GW(Zl)fm(Xth Z1)dXy, in which
Gw(Z1) = G(Z1)H(Zy — 1) (where G(Z1) = g(aZy)) is the normalized distribution of particles and f;(X —X1,77)
represents the dimensionless stress (f, = 1/(ufk2) f) induced on the surface of a particle with center at the distance Z;
from the wall. The slip velocity Uy, may be expressed in term of the dimensionless stresslet .S, on a particle:

Uy =Up+Upr =Uy — %/ G(Z1)[Sz:(21) — S53(Z41))dZ, )
1

The stresslet was calculated analytically in bipolar coordinates and the integral determined with a 104 precision. We
then obtained for a homogeneous suspension (viz. G(Z;) = 1) in quadratic flow : Ug™* = 3.586 ¢. In a similar
way, we found a slip velocity for a suspension in a shear flow: Ui = w3 /(kya) = 1.4419 ¢ which is in agreement
with the result of Tozeren and Skalak[3]: U} ~ 1.45 ¢. The slip velocity was also calculated for typical inhomogeneous
distributions of particles (with accumulation or depletion of particle near the wall) for both flow fields. It was found that
the slip velocity is more sensitive to variations in the particle distribution for a quadratic flow than for a shear flow.

The effective viscosity of a inhomogeneous suspension sheared between parallel walls is, by taking in account each wall
separately:
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For the homogeneous case, it reduces to:
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The effective viscosity of a suspension in Poiseuille flow is defined from the relationship between the pressure drop and
the flux of the suspension. The result for an inhomogeneous suspension is:
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and for the homogeneous case:
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Obviously, for a/h — 0, Einstein result [1] is recovered in all cases. Brenner [7] found that a neutrally buoyant particle
in a circular tube with radius R in Poiseuille flow induces a O(a/R)? pressure drop. His calculation uses the method of
reflexions and therefore does not take into account the case where the particle is close to the wall. Nevertheless his result
allows us to expect that the simultaneous effect of parallel walls on the effective viscosity in a two-dimensional Poiseuille
flow will be at most of order O[¢(a/h)3].

CONCLUSIONS

All terms involving a/h in the above results for the effective viscosity at order ¢ take into account exactly the interaction
of individual particles with a wall. Since these terms are different for a shear flow and a Poiseuille flow, the effective
viscosity of a wall bounded suspension is found to be dependent on the flow field, unlike the Einstein result for an
unbounded suspension. The effective viscosity found for a suspension in Poiseuille flow is in qualitative agreement with
experiments ([8], [9], etc. reviewed in [2]), that is it decreases when the distance i between the plates decreases. The high
sensitivity of the effective viscosity to the distribution in particles in Poiseuille flow shows that it is essential to measure
the particle distribution at the same time as the viscosity in order to estimate wall effects quantitatively and eventually
compare with theory.
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