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Summary The paper deals with computer simulation of natural convection in multicomponent solution. Three-
dimensional calculations have been done to study the onset of convective motion and correspondent �ow patterns. The
process is considered for Rayleigh number in range 1 · 103 ÷ 4 · 104. The results are in good agreement with theoretical
data on hydrodynamics stability.

MATHEMATICAL MODEL

Computer simulation of mass-transfer in multicomponent systems with phase transition is one of the most
challenging problems for modern crystal growth technology. The paper presents the numerical study of natural
convection in solidi�cation of ternary nondilute solution. The problem arises in computer simulation of liquid
phase epitaxy (LPE) � a crystal growth technique that is widely used for preparation of multi component
semiconductor materials with desired structural composition. LPE is classi�ed as a solution growth process. In
distinction to solidi�cation of pure materials or dilute alloys phase transition temperature in epitaxial growth
depends on the composition of the liquid and solid phases.
The process described by 3D time-dependent �uid �ow and mass transport equations. The solution is sup-
posed to be incompressible and Boussinesq approximation is adopted. In cartesian coordiantes (x, y, z) and
nondimensional variables the set governing equations is:
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zz, (x, y, z) ∈ D, D = [0, L]× [0, L]× [0,H], L/H ≈ 10,

V = (Vx, Vy, Vz) - velocity vector, p - pressure, Ci, i = 1, 2 - concentration of the correspondent component,
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is Grasho� number for concentration, Sci = ν/Di is Schmidt

number, ez = (0, 0,−1). The non - dimensional variables are introduced by scaling the length with the depth
of the liquid phase (H), time � with H2/ν and concentration � with the initial concentration of one of the
components in the solution.
The phase transition is going on the substrate that is placed under the solution at z = 0. The interface conditions
on concentration �elds consists of the mass balance between the transported and incorporated solute species:
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and phase diagram representing the equilibrium between the solution and growing layer: Fliq(C, T ) = 0,
Fsol(Cs, C, T ) = 0, where T (t) - temperature of the system, uniform in space and changing in time accord-
ing a prescribed rule, Cs

i - concentration of the correspondent solute specie in the solid phase. On the rest of
the boundary ∂nC = 0. Boundary condition on velocity �eld is V = 0.
The basic principle underlying the growth of epitaxial layers by LPE is similar to that of growth of salt crystals
from a saturated saline solution. If the solution is slightly supersaturated dissolved components precipitate out
of the solution onto the substrate. Supersaturation is usually maintained by gradually lowering the temperature
during the growth . The reduction in the concentration of growth units in the vicinity of the growing layer gives
rise to concentration gradients.
The onset of convection in LPE system has a known so far analogy. Neglecting the existence of the component
with smaller Grasho� number and supposing linearity of phase diagram we actually obtain the problem con-
cerning convective instability in a horizontal �uid layer with nonlinear conduction temperature pro�le. In our
case instead of temperature the role of active scalar plays concentration. Theoretical analysis of the problem
shows, that nonlinear pro�le gives rise to stable �nite amplitude subcritical convective motion in the form of
hexagons with �ow direction at the center of the cells depending on the pro�le curvature sign.



NUMERICAL RESULTS

The governing equations discretized at staggered grid using control-volume method. Approximation of con-
vective terms ensure kinetic energy conservation and mass balance for dissolved components. The scheme is
implicit, has second order in space, �rst in time. Navier - Stokes equations and equations of mass transfer are
solved successively at each time level. To determine velocity and pressure �elds we follow predictor -corrector
procedure. The calculated velocity �eld is substituted into the mass transfer equations, that are solved using
the extended to 3D case coupled algorithm.
Full scale computer simulation for LPE growth of actual materials under reasonable operating conditions has
been done for Rayleight number Ra = max

i
GriSci varying in the range 1.1 · 103 < Ra < 1.1 · 105, Sci = 50.

The onset of �nite amplitude subcritical convective motion is observed at Ra = 1100. The calculations show a
transition from initial non-regular �ow pattern to hexagonal planform. The run duration is approximately 25
vertical di�usion times. In the range 1.1 · 103 < Ra < 1.4 · 104 a regular cellular convection pattern is obtained.
At Rayleight number of 1.4 · 104 ÷ 3 · 104 the transition to skewed-varicose and knot instability is registered.
The mean convective structure size increases with Ra while Ra < 3 · 104. Above Ra = 3 · 104 chaotic cellular
small-scale convection is detected. The mean cell size at Ra = 3.5 · 104 several times less then at Ra = 1.8 · 104.

CONCLUSIONS

Three-dimensional numerical simulation for LPE growth of ternary compounds con�rm the existence of convec-
tive motion at Rayleigh numbers less than critical one measured in two-dimensional calculations and predicted
by stability analysis. The planform of subcritical convection and �ow direction agree with theoretical data. The
evolution of the �ow pattern at Ra above the critical value is also consistent with theoretical predictions and
experimental results. The numerical procedure is reliable and allows to perform long-time computer simulation
of the convective motion in a wide range of operating parameters.
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Figure 1. Ra = 1 · 103 Figure 2. Ra = 2.5 · 103

Figure 3. Ra = 1.8 · 104 Figure 4. Ra = 3.5 · 104

Concentration �eld distribution in plane z = H. Bright spots have higher concentration value then dark ones.


