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INTRODUCTION

We examine the surface-tension-driven readjustment of a viscous liquid film following a sudden change in the
shape of adjacent solid surfaces. Such situations arise widely in industrial contexts, e.g. when geometrical
imperfections create defects in coatings. Important physiological applications arise in the lung, when the
liquid lining of an airway redistributes following impact of an inhaled particle or contact between the wet
walls of a collapsing airway. Here, an initially flat solid substrate is assumed to deform into an isolated hump
or interior corner. For sufficiently tall humps and sharp corners, a quasi-static puddle connects to a spatially
unbounded thin film; the capillary pressure in the film is greater than that in the puddle, causing it to grow.
We employ numerical simulations and asymptotic analysis to characterise the induced flows. We then show
that flows off humps with maxima less than a critical height have a qualitatively different structure.

MATHEMATICAL MODELS

We model the flow of a two-dimensional incompressible Newtonian fluid of constant viscosity g bounded
above by a passive gas and below by a rigid, possibly curved, stationary substrate. The surface tension o
acting at the free surface is assumed uniform and van der Waals forces are neglected. When gradients in
substrate curvature vary over distances large compared to the fluid depth, the standard thin-film equation
can be extended in an asymptotically consistent fashion (Schwartz & Weidner 1995), yielding

(1) hy + % [h3(h+g>mmm]z = 0,

where the substrate and free-surface locations lie at y = g(z) and y = g(z)+h(z, t), respectively, in Cartesian
(z, y)-coordinates, and ¢ is time. We employ (1) to model capillary-driven flow off of a Gaussian-shaped hump,
g(z) = go exp[—(x/2d)?], starting from the uniform initial condition h(x,0) = 1. We examine solutions of
(1) on a finite domain 0 < z < L but select L > 1 so that the film remains undisturbed near = L. To
model flows near an interior corner, where the substrate curvature is singular, we employ an alternative
formulation: namely, Heil & White’s (2002) modified thin-film equation,

(2) pe + 3 [Pk, = 0,

coupled to a parameterisation of the film thickness using spines. s measures distance along the flat substrate
from the corner, while h measures the height of the film along certain prescribed directions (spines). The spine
angle distribution, ((s), is chosen so that the spines do not intersect within the fluid interior and are normal
to the substrate where the film is thin. The film density p(s,t) = hcos $+d3/ds h?/2 then insures exact mass
conservation. By employing the exact curvature of the free surface k(s,t) = (ysss — Tssys) /(22 +42)%/2, (2)
enforces the exact Young—Laplace constraint in regions where the film is deep and quasi-steady. In regions
where the film is thin, (2) reduces to the standard thin-film equation. Thus, the unsteady dynamics of
thin-film regions and, hence, the fluid flux into (or out of) the corner puddle are accurately predicted.

RESULTS

In conjunction with symmetry and no-flux boundary conditions, (1) and (2) were discretised in space using
2nd-order accurate finite differences and advanced in time using an adaptive-step backward-differencing
scheme. Most computations were carried out for O(107) time units using O(10*) grid points. Large-hump
simulations (e.g. go = 10) were conducted with L = 500, while small-hump simulations (e.g. go = 2.8) were
conducted with L = 5000. For d = 0.5, a nonuniform grid was needed to provide adequate spatial resolution.
An equispaced s-grid, however, was found to be adequate for corner simulations with L = 30, an initial
puddle height (at s = 0) of 1.5, an initial far-field film thickness of 0.06 and an interior semi-angle of /5.
Raw numerical results for both the large-hump and corner simulations are shown in figure 1 [(a),(b) free-
surface locations; (c),(d) pressure distributions]. Broadly similar behaviour is observed: following a transient
phase (not depicted), the film pinches off, separating a quasi-static puddle from a propagating capillary
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FIGURE 2. Scaled hump film height (upper) and pressure (lower) in regions II (left) and IIT (right).

wave. Large-time asymptotic analysis reveals that the slowly growing quasi-static puddle (region I) satisfies
h+ g ~ k(x —3)/2, where k and, hence, the volume V7 can be related to g(z) and the effective contact line
location zg(t) [~ Zmin(t) in figure 2] via matching conditions. The right subplots in figure 2 indicate that the
propagating wave (region ITT) can be captured by seeking a solution of the form h(z,t) ~ Fy(&)+t~Y/*MFy(€),
where z = xo(t) +t/*¢ and M is a constant. The dashed lines show the leading-order solution Fy(¢), which
satisfies —&Foe /4 + (F Fogee)e /3 = 0 (Bowen 1998, Aradian et al. 2001), and its negated second derivative.
Since F} satisfies a linear equation, we have imposed the normalisation condition fooo F1d¢ = 1. Region 11 is
a quasi-steady draining region that acts as a valve note the shock-like pressure distributions in figures 1c.
In accord with the left subplots in figure 2 (and following Jones & Wilson 1978), we set h ~ t~Y/2H(n),
x = z0(t) + t~Y/*n and obtain H*H,,, = —Q for some constant flux @ > 0. Matching H with region I
and H, with region III determines @ in terms of x(zg). Since h(x,0) =1 for 0 < x < L, the total fluid
volume V = L for all time. For large t, V' ~ Vi + Virr. Using the equation governing Fj, the leading-order
contribution to Vi is found to be L — zy. Notably, an O(1) fixed-mass contribution M arises from the
Fy correction, which, although O(t='/4), is spread over an O(t'/*) distance. Thus, the volume condition
becomes: g ~ Vi(xg) + M, where M — the mass of fluid trapped in (or lost from) region III — is determined
by the transient dynamics over intermediate time scales. Following pinch-off, the puddle in region I grows
very slowly: z¢ advances according to V/(zo)zo: ~ Qt5/%/3, i.e. xo; = O(t°/*). Finally, simulations for
small humps reveal a qualitatively different structure, with a propagating capillary wave attaching directly
to the top of the hump. To describe this case, we expand h(z,t) as in region III except that z = t1/4§.
We find two solution branches for 1 < gy < g. and no solutions for g > g., where the critical hump height
ge ~ 3.36. Our small-hump numerical simulations converge to the branch of similarity solutions having
smaller (negative) slope at the origin. For a given go, M(gg) = — fooo (Fy — 1)d¢; i.e. since pinch-off does
not occur for these small-hump solutions, M(gg) can be predicted.



