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HYDRODYNAMIC THEORY OF DE-WETTING
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Summary A prototypical problem in the study of wetting phenomena is that of a solid plunging into or being withdrawn from a liquid
bath. In the latter, de-wetting case, a critical speed exists above which a stationary contact line is no longer sustainable and a liquid
film is being deposited on the solid. Demonstrating this behavior to be a hydrodynamic instability close to the contact line, we provide
the first theoretical explanation of a classical prediction due to Derjaguin and Levi: instability occurs when the outer, static meniscus
approaches the shape corresponding to a perfectly wetting fluid.

INTRODUCTION AND RESULTS

The forced wetting or de-wetting of a solid is an important feature of many environmental and industrial flows. In
typical applications such as painting, coating, or oil recovery it is crucial to know whether the solid will be covered by a
macroscopic film or not. If a fiber is plunging into a liquid bath to be coated (wetting case), the speed can be quite high
(m/sec), while maintaining a stationary contact line. In the opposite case of withdrawal (de-wetting), a stationary contact
line is observed only for very low speeds, and a macroscopic film is deposited typically at a speed of only a few cm/sec.
Yet no theoretical explanation for this instability exists, or of the fundamental difference between the two cases.
It is well known that viscous forces become very large near a moving contact line, and are controlled only by some
microscopic cut-off

�
, for example a slip length. As a result of the interplay between viscous and surface tension forces,

the interface is highly curved, and the contact line speed � is properly measured by the capillary number �������	��

� ,
where � is the viscosity of the fluid and � the surface tension between fluid and gas. It was first proposed by Derjaguin
and Levi (1), that instability occurs if this dynamic interface angle reaches zero. Apart from the fact that there is no
justification for this condition, it does not lead to a unique criterion since the angle depends on the position where it is
evaluated. However, it was noted experimentally (2) that the interface profile at the critical speed corresponds to a static
meniscus with zero equilibrium contact angle, except in the immediate neighborhood of the contact line.
To explain the physical mechanism behind the instability, we note that the interface shape ������� near the contact line must
have the form

����������� ��� ����� �!�"�#��$&%'
(��� � � � (1)

since the cut-off
�

is the only available length scale. The dependence on $)% was put in for later convenience. As expected,
the curvature ��* *+��,)�-�.$�/% 
0��� � � � * *1��,2� becomes very large at the contact line, since

�
is in the order of nanometers. As

the curvature of the local solution has to match to a value of order unity in the static outer part of the profile, the usual
boundary condition for

�
is one of vanishing curvature for large � . In the wetting case this leads to an asymptotic solution

first found by Voinov and an expression for the interface angle usually referred to as “Tanner’s law”.
However, it is a well-known but little appreciated fact that Voinov’s solution fails away from the contact line in the de-
wetting situation. Instead, the local solution always retains a positive curvature, and will fail to match to an outer solution
in the limit of small

�
. At the critical speed, the necessary compromise between the inner solution near the contact line and

the outer static solution has been pushed to the limit: from all possible inner solutions, the one with the smallest possible
curvature is selected. The outer solution, on the other hand, realizes the solution with the largest curvature, which happens
to be the one corresponding to zero contact angle, in agreement with the criterion of Derjaguin and Levi.
To make an explicit comparison between our asymptotic theory and numerical integration of the lubrication equations,
we choose a plate being withdrawn from a liquid bath (see Fig.1) as a test case, a geometry which was studied in detail
in (3). There it was found numerically that there exists a critical capillary number ����314 , above which no static solution
exists, in agreement with the experimental findings described above. The final result of our theory is then
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where
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S$ 9% is the critical rescaled capillary number, and Q � � 
S$2% the rescaled slip length.

Our central result (2) is compared in Fig.2 to a numerical solution of the lubrication eqaution. No parameter was adjusted
to achieve this comparison.
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Figure 1. A schematic of the setup. At the contact line, h(0) = 0, and the slope of the interface is ��� . The plate is being withdrawn at
an angle � .
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Figure 2. A comparison of ����� as determined by numerical integration of the lubrication eqaution for �	�
������
 , and theory, as
summarized by equation (2).


