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Summary We study the effect of bottom undulations on the stability of a stationary film flow down inclined planes. Allowing for
rather moderate bottom variations, we carry out a linear stability analysis and show how the wavy bottom affects the instability.
Contrary to results for weakly undulated bottoms described in literature, where the instability is identical to that over a flat incline,
we obtain an increase of the critical Reynolds number and a smaller unstable frequency spectrum with respect to the flat bottom in
accordance with experimental observations.

INTRODUCTION

The instability of the steady film flow down an inclined plane has been studied in detail during the last decades [1].
Theoretical studies usually assume idealized conditions such as a perfectly flat incline and disregarding inflow and
outflow disturbances. As a deviation from the perfect conditions we consider how moderately wavy bottom variations
affect the linear stability of the two-dimensional film flow down inclined planes. As a starting point of our stability
analysis, we take the steady flow of thin films over moderately undulated bottoms [2], [3]. By considering moderate
bottom variations, our analysis differs from Tougou’s who carried out a linear stability analysis for the flow over
weakly wavy bottoms [4]. He found that the instability was identical to that over a flat incline without any change of the
critical Reynolds number. However, recently, in experiments with rectangular corrugations a higher critical Reynolds
number than that for a flat incline has been measured [5]. We show that, different from Tougou’s result, the wavy
bottom does affect the instability. The bottom waves stabilize the steady flow and increase the critical Reynolds
number. The character of the long-wave instability remains but the bottom undulation yields a narrower unstable band
than for a flat incline [6].

STABILITY ANALYSIS

Considering two-dimensional flow of a thin film down a sinusoidal bottom of moderate waviness, we carry out a linear
stability analysis for the stationary flow using the local coordinate system and the scaling applied in [3]. Especially the
perturbation parameter of the linear stability analysis is the same as for the analysis of the stationary flow, i.e. the
product of the film thickness and the wave number of the bottom contour. Besides the perturbation parameter, the flow
is described by the Reynolds number, the cotangent of the inclination angle, an inverse Bond number, and the waviness
of the bottom contour. The Reynolds number is constructed with the film thickness and the maximum velocity of the
stationary film flow over a flat incline. The inverse Bond number takes into account the effect of surface tension over
the scale of the bottom wavelength: //Bo = 1/(Bo*sina) = (2zlc,/2)%/sina, where a, 4, lc, are the inclination angle,
wavelength of the bottom, and capillary length of the fluid, respectively. The waviness is the product of amplitude and
wave number of the bottom wave. In the analysis, all these fixed parameters are assumed to be of order one. Thus, the
waviness is small enough to avoid the creation of vortices in the valley of the wavy bottom [7].
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contribution and the local capillary pressure contribution. The hydrostatic pressure contribution, expressed by the mean
of the cotangent of the local inclination angle, is always larger than that of the flat bottom. The same holds for the
capillary pressure contribution that yields an additional term, also for the long-wavelength limit, due to the bending of
the free surface by the bottom contour. An example of the neutral curve comparing the undulated bottom to the flat one
is reproduced in Figure 1.

Figure 2 shows that the increase of the critical Reynolds number can be quite important. It not only augments with
the waviness of the bottom contour but also with decreasing inclination angle. The latter is due to both, hydrostatic and
capillary pressure contributions. Furthermore, the figure indicates why considering weakly wavy bottom contours did
not yield any deviations from the results obtained for a flat plane.
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