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Summary The present work examines the linear stability of three dimensional perturbations of Poiseuille flow of a Bingham fluid. The
principal characteristic of the basic flow is the presence of the plug zone which moves as rigid solid. A Chebychev collocation method
is applied to compute eigenvalues and the maximum transient amplification factor. It is found that the Poiseuille flow of a Bingham
fluid is linearly stable. Due to the non-normality of the operators, a transient amplification of the kinetic energy of disturbances is
observed. The results show that the amplification factor decreases with increasing Bingham number. Critical conditions for the onset
of energy growth are also determined. WhenB >> 1, it is shown that the critical Reynolds numberRec increases asB1/2.

INTRODUCTION

We consider the flow of an incompressible Bingham fluid with a yield stressτy and a plastic viscosityµ0 in a plane
channel. The non-dimensionalized deviatoric extra-stress tensor is given as :

τ =
1

Re

[
1 +

B

DII

]
D ⇔ τII >

B

Re
and DII = 0 ⇔ τII ≤ B

Re
, (1)

whereDII andτII are respectively the second invariant of the strain rateD and of the tensorτ . The quantity(1 + B/DII)
is a dimensionless effective viscosityµ. The dimensionless parametersB andRe are respectively the Bingham and the
Reynolds number. They are defined byB = τy H∗/µ0 U∗

0 andRe = ρU∗
0 H∗/µ0.

The flow in the yielded domain is described by Navier-Stokes equations ; in the
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Figure 1. Poiseuille flow of Bingham
fluid

region where the yield stress is not exceeded (unyielded region), we haveDII = 0:
this region is called the plug zone ; it moves like a rigid solid. The interface between
the viscous region and the plug zone is a yield surface whereτII = B/Re. The
motion of the plug region is determined by the conservation of linear momentum.
For one dimensional shear flow, we haveU = (U(y), 0, 0), with :

U(y) =





1, 0 ≤ |y| < y0,

1−
( |y| − y0

1− y0

)2

, y0 ≤ |y| ≤ 1,
(2)

where,±y0 are the positions of the interfaces. The basic flow depends only onB
and is represented in Fig. 1.

LINEAR STABILITY ANALYSIS

Following the usual linear stability analysis, an infinitesimal perturbation(εu′, εp′), where(ε << 1) is superimposed on
the basic flow(U, P). Wherever the yield stress is exceeded, the effective viscosity is also perturbed:

µ (U + εu′) = 1 +
B

|DU | − ε

(
∂u′

∂y
+

∂v′

∂x

)
.

B

DU |DU | , (3)

The linearized perturbation equation are then derived. Because the streamwise and spanwise directions are uniform,
perturbations are assumed to have the form :A(x, y, z, t) = Â(y, t)exp[i(α x + β z)], whereÂ stands for̂u, v̂, ŵ andp̂.
The resulting equations and the boundary conditions can be found in [2]. These equations can be cast inû, v̂ formulation
if β 6= 0 or v̂, ŵ formulation ifα 6= 0. They can be written as :

L q̂ +
∂

∂t
M q̂ = 0, (4)

whereq̂ = (û, v̂)T or (v̂, ŵ)T ,L andM are2×2 matrices of linear differential operators. An eigenvalue problem is then
derived by assuminĝA(y, t) = Ā(y)exp(−iCt). We obtain :iCq̄ = M−1 L q̄ = L1 q̄. The eigenvalues are computed,
using a spectral collocation method based on Chebychev polynomials. The least stable mode determines the asymptotic
behavior of a perturbation initiated att = 0. The analysis of the transient evolution is performed using kinetic energy of
the perturbation. LetG(t) the maximum energy amplification at timet, following the same procedure as in [3],G(t) is :

G(t) = max
‖q(t)‖2
‖q0‖2 = ‖exp(−iL1 t‖. (5)

We have to note that the Squire theorem and the formulation normal velocity and vorticity can not be used here.



RESULTS AND DISCUSSION

The aim of this study is to understand the influence of the Bingham number on the stability problem. For this purpose
and by comparison with the Newtonian fluid, one has to note thatB > 0 induces : (i) a variable effective viscosity in the
yielded zone ; (ii) an increase of the viscous dissipation [2] ; (iii) an increase of the velocity gradient near the wall and
(iv) a modification of the boundary conditions at the interface.
WhenB → 0, the plug zone is very thin and the Bingham terms can be neglected in the linearized perturbation equations.
The analysis of this particular case denoted afterB → 0 permits to assess separately the effect of the boundary conditions
at the interface on the stability.
The analysis starts with the eigenvalues spectrum. An example is shown on Fig. 2: it is obtained forα = 1, Re (1− y0) =
104 and B (1 − y0) = 2. The eigenvalues of the P-family are distributed along two branches, in contrast with the
Newtonian fluid, for which it consists in one branch. The splitting of the P-family is actually a consequence of the
boundary conditions at the interfaceu = v = w = 0. In the case of three dimensional disturbance a splitting of S-family
is also observed (Fig 3). This splitting is probably due the coupling between the velocity components whenB > 0. The
calculation shows that for sufficiently large Reynolds numbers, the least stable mode is an interfacial mode. In addition,
in the range of parameters considered here, we have not found any instability. We can also add the fact thatB has a
stabilizing effect. Concerning the transient growth, Fig. 4 gives the amplification factor for a Newtonian fluid and two
values ofB : B = 0.001 andB = 2. We observe that even for moderate values ofB, Gmax is strongly reduced by
comparison with the Newtonian fluid.
We conclude this section by the determination of the conditions for no energy growth fig. 5. WhenB >> 1, it is shown
that the critical Reynolds numberRec increases asB1/2. This asymptotic behavior is in agreement with the conditional
stability based on the energy method [1]
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Fig 2 : eigenvalues spectrum forB → 0 andRe = 104. Fig 3 : eigenvalues spectrum forB = 2 andRe = 104.
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Fig4 : Maximum growth as a function of time. Fig 5 : Critical Reynolds number versusB.
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