GLOBAL STABILITY OF THE FLOW INDUCED BY WALL INJECTION
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Summary The paper deals with the study of the stability of the plane flow induced by wall injection. The perturbation is in the normal
mode form in time and the eigenfunction is described in the (z, y)-plane, where the flow also takes place. This approach allows a better
comprehension of the thrust oscillations observed in large solid propellant motors.

PRESENTATION

Large solid propellant motors exhibit oscillations of their
thrust certainly due to the coupling of the acoustics and a
hydrodynamic instability of the flow inside. In this paper,
we only focus on the study of the hydrodynamic instabil-
ity of the flow. In order to simplify the analysis, compress-
ibility and 3D effects are neglected. The flow is induced
by lateral wall injection of fluid, with a constant velocity,
in a semi-infinite plane channel.

The mean flow can be described by a streamfunction ¥(z, y)
whose expression is ¥(z,y) = zsin (Zy) according to
the Culick/Taylor relation valid for large Reynolds num-
bers. The coordinate x is the longitudinal one, with z €
[0, o[, and y the transverse one, y € [—1, 1], see figure 1. Both are made dimensionless by half the height of the channel.
This mean flow is strongly non-parallel.

The purpose of the present paper is the study of the global behaviour in the (z, y)-plane of any perturbation superimposed
to the Taylor/Culick flow. A streamfunction ® associated with the perturbation is sought in the normal mode form but
only in time ¢, so that ® can be written as:

Figurel. Streamlines and velocity field of the flow induced by wall
injection.

®(z,y,t) = p(z,y)e"“", w € C.

The function ¢ depends on x and y, what is the only acceptable form considering that the mean flow is non-parallel.
Classical “quasi-parallel” stability analysis have been previously performed (see [1], [2]), but they are not valid for small
values of z in our case (see figure 1).
The linearised Navier-Stokes equations write as a partial differential equation for ¢ with respect to the two variables x
and y
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with A the Laplacian operator A = 5"—; -+ 88—;2 and R the Reynolds number based on half the height and the wall injection
velocity. The boundary conditions associated with the previous equation are homogeneous

o Atthe lateral wall: ¢(z,+1) = 0 and 3¢ (z,+1) =0, forall z > 0,

o Atthe head of the channel: ¢(0,y) = 0 and 22(0,£1) = 0, forall y € [-1,1].
¢ An “adequate” output condition for ¢

what leads to an eigenvalues problem with w the complex unknown eigenvalue. For its numerical resolution, it is then
possible to separate symmetric and antisymmetric solutions in order to divide by two the size of the computational domain.
Results are given in the lower half plane (z, y) € [0, Xf]x[—1, 0], with X s the final abscissa of the computational domain.
It seems that the “adequate” boundary condition imposed at the exit has nearly no effect on the results.

RESULTS

Two kinds of results can be obtained, first the spectrum of the eigenvalue problem and second the eigenfunctions associated
with it. The spectrum gives the value of the pulsation (w., real part of w) and also the temporal growth rate of the intrinsic
perturbation (w;, imaginary part). An example (antisymmetric mode for R = 1000 and X = 4) is given figure 2 in
the plane (w,,w;). It can be observed that the spectrum is discrete, so only particular frequencies correspond to intrinsic
perturbation of the Taylor/Culick flow. Then, a coupling of the acoustics with the hydrodynamic perturbations is possible
when frequencies corresponding to an acoustic mode (a cavity mode) and to a perturbation are the same. It may be a
simple way to understand the creation of the thrust oscillations. It can also be observed that the temporal growth rate w;
of the perturbations is negative, it means that they are vanishing with time ¢, so a constant source of noise is necessary



in order to observe the perturbations. This seems to agree with direct resolution of Navier-Stokes equations in this case:
every one hundred time-steps, noise must be injected at the lateral wall for the oscillations to be observed. In experimental
set-up, the noise is provided “naturally”. The temporal growth rate w; is also decreasing with an increase of the pulsation,
this is certainly due to the viscosity of the fluid, the more the phenomenon is varying rapidly, the more it is damped by the
Viscosity.

If we look at the phase of ¢, figure 3, a special care must be taken
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of the tides, much more than the effect of the moon or of the sun
that mainly impose the period of the tide (half a day).

By having a look at the first numerically converged modes, enu-
merated in figure 2, it is possible to classify the modes with the
number of amphidromic points of the eigenfunction associated with. Each mode j, ¢ has ¢ amphidromic points. Moreover,
except for the mode 7 = 0 whose amplitude is decreasing with z, each mode exhibits a quasi-exponential increase of
the amplitude of the function ¢ in the z-direction, see last graphic in figure 3 which represents the real part of ¢ in the
(z,y)-plane for the mode 1,2. The increase of the perturbation may be due to the curvature of the streamlines that may
act as the Coriolis force on the tide.

Figure 2. Part of the spectrum of the Taylor/Culick flow for
the antisymmetric modes.
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Figure 3. Phase of the eigenfunctions ¢ for modes (1,0), (1,1), (1,2). The number of amphidromic points, Az, depends on the frequency
of the perturbation. The last graphic represents ¢, that is oscillating and growing in z.
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