NONLINEAR STABILITY OF ROTATING CHANNEL FLOW
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Summary The stability of Poiseuille flow in a channel subject to a system rotation about a spanwise axis is considered. Linear stability
results show that the basic flow first loses stability to a two-dimensional streamwise-independent disturbance. We find two-dimensional
nonlinear secondary flows, and analyse their stability. A rich structure of relationships exists between the secondary flows which does
not exist for the equivalent Couette problem. We proceed to find three-dimensional nonlinear travelling-wave tertiary flows which
bifurcate from the secondary flows. Three distinct three-dimensional tertiary flows are identified including flows which resemble the
twisting vortex flows observed in previous experimental and DNS studies.

INTRODUCTION

The stahility of channel fow subject to system rotation is of relevance to many geophysical and astrophysical problems,
as well as having many engineering applications, for example coolant flbw in turbine blades or the fow inside impellers
of centrifugal pumps. The present study investigates channel flow subject to system rotation about an axis in the spanwise
direction. The stahility of thisflow is determined by two dimensionless parameters; the rotation number, 2, and Reynolds
number, R. Linear stability analysis [3] predicts aminimum critical Reynolds number, R7,°, of many orders of magnitude
less than the corresponding value for plane Poiseuille fow. This result has been confi rmed experimentally by Alfredsson
& Persson [1], who found the setting up of stresmwise vorticeswhen R > R7° and Q liesin a certain range. At higher
valuesof R, as(2 isincreased a secondary instability occurs which leads to an adjustment of the spanwise wavenumber,
while at higher R athree-dimensional travelling-wave tertiary fow may occur [1].

BASIC FLOW AND LINEAR STABILITY

The governing eguations, the Navier-Stokes equations together with the incompressibility condition, are expressed in a
rotating frame of reference. Seeking a steady basic solution whose only non-zero velocity component lies in the stream-
wise direction, we derive a parabolic basic-velocity profi le together with a pressure gradient in the wall-normal direction.
Consideration of the linear stability of this basic fow resultsin alinear differential eigenvalue problem, whose solution

was obtained using a Chebyshev collocation-point numerical method. We fi nd good agreement with the well-known re-
sults of previous authors for the non-rotating case, and the existing results for the rotating case[1, 3]. For the rotating
case, the fow fi rst becomes unstable to a two-dimensional streamwise-independent mode at the critical Reynolds number
R[° = 66.447 (for R based on maximum speed and half channel width). For larger Reynolds numbersthe basic flbw may

also lose stability to disturbances of non-zero streamwise wavenumber, a. However, for agiven spanwise wavenumber, 3,
the mode with a = 0 is always the most unstable mode. Marginal stability curvesfor various wavenumber combinations
areplotted in Fig. 1.

NONLINEAR TWO-DIMENSIONAL
SECONDARY FLOW

Given the results arising from linear stability analysis, and also from DNS and experimental studies [2, 1], we seek
a streamwise-independent, steady, nonlinear solution to the governing equations. Nonlinear perturbation equations are
solved using the Newton-Raphson algorithm. We fi nd nonlinear solutions which arise from bifurcations from the basic
fbw which are of a streamwise-vortex character. In Fig. 2 we plot a measure of the amplitude of the nonlinear solution

against R for two different wavenumbers. It may be observed that the 5 = 2.5 branch joins with the 3 = 5 branch at
R =~ 153. The secondary stability analysis described in the following section fi nds that the 8 = 5 solution loses stability
to the 8 = 2.5 solution in a streamwise-independent steady, subharmonic bifurcation. Due to the existence of this type
of instability, and the fact that lower-order eigenmodes may become unstable, multiple solution branches may exist for a
given wavenumber and arich structure of relationships exists between the two-dimensional nonlinear solutions.

STABILITY OF SECONDARY FLOWS

Itis of interest to analyse the stability of the secondary flows described in the previous section, both to determine where
these fbws may be expected to exist, and aso to identify bifurcation points for the tertiary fbws. Since the secondary
fbws are periodic in the spanwise direction Floquet theory applies, and we analyse the stability of a given secondary
fow to alinear disturbance with spanwise Floquet parameter, b, and streamwise Floquet parameter, d. Various types of
bifurcation have been found which include those which correspond to the steady, spanwise bifurcation described above,
and also those which may correspond to the travelling-wave solution described in the introduction. We found that the
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Figure 1. Marginal stability curves corresponding to the most Figure 2. Amplitude of the bifurcating two-dimensional sec-
unstable eigenvalue for the values of « and 3 indicated. ondary and three-dimensional tertiary flows (I, superharmonic;

111, subharmonic) against R when = 22.1325.

Figure3. Contours of the streamwise component of vorticity ina streamwise (x) - spanwise(y) slice for tertiary flows fa) superharmonic
(1) and (b) superharmonic (I1), both for R = 2200, 8 = 2.5, a = 1.5 and Q = 1, and (c) subharmonic (I1l) R = 500, 8 = 1.25,
a = 0.77 and Q = 22.1325. The coordinates have been scaled to show two wavelengths in either direction.

fow bifurcating from the minimal critical point is stable to al disturbances for a fi nite interval beyond the bifurcation
point, which isin agreement with the DNS and experimental results[1, 2]. All the fows appear to fi rst lose stability to an
Eckhaus disturbance, i.e. disturbanceswith d = 0. However, the secondary flow above the critical point remains stable
within a closed Eckhaus region. Excellent agreement is found with the experimental study of Afredsson & Persson [1],
both for Eckhaus and travelling-wave instabilities.

THREE-DIMENSIONAL TRAVELLING-WAVE TERTIARY FLOWS

We have solved the governing equations for three-dimensional travelling-wave tertiary fows which arise from a bifurca-
tion from the secondary flows described above. Three distinct tertiary fows have been obtained, two superharmonic fows

and one subharmonic fow. The superharmonic fbws are characterized by staggered vortices lying either side of low-
speed streaks in the streamwise vel ocity component. One of these flows (1) has one such streak per spanwise wavelength,
the other (1) hastwo. The subharmonic flow (I11) also has vortices lying either side of low-speed streamwise streaks, but
these vortices are not staggered. An illustration of these fows is provided in Fig. 3, while two of the fows' bifurcations
from the secondary flow are shownin Fig. 2.

CONCLUSIONS

We have analysed the linear stability of rotating Poiseuille fow and found the steady, streamwise-independent nonlinear
bifurcating secondary fows. The secondary fow bifurcating from the linear critical point is found to be stable to al
disturbances for Reynolds numbersin afi nite interval abovethe critical point. A number of possible types of tertiary flow
bifurcation points have been identifi ed. Full nonlinear solutionsfor three different classes of three-dimensional travelling-
wave tertiary fows are presented. Good agreement is found with previous experimental and DNS-based studies.
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