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Introduction
The similarity of the coherent structures (streaks and hairpin vortices) naturally occurring in different fully developed
bounded turbulent shear flows as well as in transitional flows suggests the existence of a basic mechanism responsible for
the formation of these structures, under various base flow conditions. The common elements for all such flows are the
shear of the base flow and the presence of a localized vortical disturbance. The objective of the present numerical (and
theoretical) study is to examine the capability of a simple model of interaction, between a localized vortical disturbance
and laminar uniform unbounded shear flow, to reproduce the generation mechanism and characteristics of the coherent
structures that naturally occur in turbulent bounded shear flows. This objective is shown schematically in Fig. 1.

Problem statement and methodology
The base flow is characterized by its shear
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�
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and the localized disturbance by its vorticity field � . Two

geometries of the initial disturbance are considered: (i) a ’spherical’ vortex ring (Gaussian vortex), the vorticity field
of which is given by � ������������
���� �"!$#�%�&�'(�*),+.-�/102�3�54�&687 '8&.�*
 where

�
is a vector defining the disturbance

magnitude and orientation,
'

is a single characteristic disturbance length scale and
4 6 is a spherical radial coordinate; (ii) a

horizontal (
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-plane) torus with a vorticity field: � �<;�9�
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are the streamwise, normal and spanwise directions, respectively,
B

is a constant defining the strength of the disturbance,4K�ML / &ON 9 &
is a radial cylindrical coordinate and

4 J
and
'

are two characteristic length scales associated with the
radius and the thickness of the torus, respectively. The existence of two characteristic length scales allows us to vary the
localized properties of the toroidal disturbance by changing the ratio

4 J 7 ' , and to seek ’optimal’ aspect ratio, for which
the disturbance growth is maximal. (Toroidal disturbance may be considered as a limit of a Gaussian vortex for

4 J �P�
.)

For a given shape of the horizontal initial disturbance, two parameters govern the disturbance evolution: (i) the strength
of the initial disturbance

�RQ��
defined by the ratio between the maximum vorticity of the disturbance

�RSOT5U*VW�
and the shear

of the base flow
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, i.e.
QY��SZT5U*V 7 
 (for

Q\[^]
, the disturbance evolution is governed by the linearized equations);

(ii) the Reynolds number based on the characteristic length scale
'
, i.e., _ -`�a
b' & 7(c .

To follow the evolution of the vortical structure, its shape is identified by the iso-surfaces of the vorticity magnitude as well
as by the iso-surfaces of the positive second invariant of the velocity gradient tensor, capturing the regions of concentrated
vorticity and swirling motion, respectively. The vortical structure is then characterized by its strength, d , measured by
integrating the enstrophy over the entire volume, (i.e. d �fe�gih � hj&lkWm ); its center, noYp , defined as the center of its
enstrophy (i.e. noYp �Pe g h � h>&b/ p kWm 7 d ) and by its inclination angle, q , (Fig. 2e) relative to the base flow.
Full unsteady incompressible Navier-Stokes equations were solved using the commercial CFD code ’FLUENT’.

Main results and conclusions
A temporal evolution of a toroidal vortex (with

48J 7 'r�ts ) is shown in Fig. 2. Similar results were obtained for other
toroidal and Gaussian vortex disturbances. Accordingly, a small amplitude initial disturbance (linear case) eventually
evolves into a streaky structure, whereas a large amplitude disturbance evolves into a hairpin vortex independent of its
initial geometry. The main non-linear effects are: (i) the movement of the vortical structure relative to the base flow due
to its self-induced motion (the centers of the vortical structure are indicated by the black bullets in Figs. 2 (d) and (e);
(ii) the destruction of the vortex streamwise symmetry. In addition, for the small amplitude case, the induced velocity is
mainly in a direction opposite to that of the base flow (Fig. 2 d), and therefore the vorticity vector strongly deviates from
the direction of the vortical structure. Thus, the vortical structure cannot be represented as a vortex filament. However,
as the amplitude of the disturbance is increased the vorticity lines follow more closely the vortical structure (Fig. 2e and
other results not shown here).
The qualitative evolution of the disturbance is almost independent of its initial geometry, whereas the quantitative charac-
teristics (i.e. vortex strength, center and inclination angle), strongly depend on the disturbance geometry. The Reynolds
number has a negligible effect on the kinematics of the vortical structure, but does have a significant effect on its transient
growth. The strength of the vortical structure is governed by the transient growth mechanism, which strongly depends on
the disturbance geometry. For the toroidal disturbance there is an ’optimal’ range of

41J 7 ' where the transient growth is
maximal (Fig. 3). For this range the spanwise separation ( u s84(J ) of two elongated vortical regions, expressed in terms of
wall units, lies within the interval of v�wyx F=z x|{�{ , which corresponds well to the spanwise spacing of low-speed streaks
(as well as the distance between hairpin vortex legs) in turbulent boundary layers. Finally, the above numerical results
will be discussed with respect to recent theories concerning the evolution of localized disturbances.
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Figure 1. Schematic drawing of the research objective.
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Figure 2. The evolution of a toroidal disturbance with ��� �����	� and 
�� ��
�� , shown by the iso-surfaces of the vorticity magnitude
for ����� ���������������  

. (a) The initial disturbance, (b) streaky structure evolved from the toroidal disturbance with ! ����� "�#%$
,

(c) hairpin vortex evolved from the toroidal disturbance with ! ��
&� $
, (d) & (e) projections on the ')( plane of the iso-surfaces

shown in (b) and (c), respectively, together with the velocity vectors along the axis of the vortical structure at the plane * �+�
( , �.-�/1032�� ' ����4&56� ( ��� ).
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Figure 3. Temporal evolution of the enstrophy integral normalized by its initial value 798 � 8 ��: , ! �.��� "�#%$;4 
�� �.
<� .


