
XXI ICTAM, 15–21 August 2004, Warsaw, Poland

THREE-DIMENSIONAL GLOBAL MODES IN SPATIALLY VARYING
RAYLEIGH–BÉNARD–POISEUILLE CONVECTION

D. Martinand∗, Ph. Carrière† and P. A. Monkewitz‡,
∗ Department of Aeronautics, Imperial College London, London SW7 2AZ, UNITED KINGDOM

† LMFA, École Centrale de Lyon, BP163, F-69131 ECULLY Cedex, FRANCE
‡ LMF, École Polytechnique Fédérale de Lausanne, CH-1015 LAUSANNE, SWITZERLAND

Summary The Rayleigh–Bénard–Poiseuille convection with spatially varying difference of temperatures on the upper and lower plates
is the archetype of systems sustaining the growth of synchronised global modes. An analytical construction method and a selection
criterion for the most unstable linear instability is proposed in cases of slowly varying systems. The results are in very good agreement
with direct numerical simulations.

This study focuses on the instabilities in a laminar Poiseuille flow cooled from its upper plate and heated from its lower
one, the latter of which presents a two-dimensional bump of temperature. This flow is representative of systems ex-
hibiting temporally synchronised, or global, instabilities despite a spatial variation of the energy flux transferred to these
perturbations — flux imposed by the difference between the temperatures of the lower and upper plates in this case of
Rayleigh–Bénard–Poiseuille convection. This tuning to a self-selected frequency cannot be accounted for by a local
criterion straightforwardly extended from the homogeneous system. Hence a global selection criterion, taking the inho-
mogeneity into account, has to be sought. Whereas an arbitrary spatial variation of the basic state is usually only accessible
through experimental or numerical stability analysis, the description of slowly varying systems can be coped with analyt-
ically. Slow variation indeed allows us to consider local stability properties, such as convective and absolute instability,
as the lowest order of a description taking the inhomogeneity into account by means of a Wentzel–Kramers–Brillouin–
Jeffreys (WKBJ) expansion. Beyond the local absolute instability threshold, the group velocity of some propagative waves
solutions of the local homogeneous stability problem can vanish at some points of the physical domain, called turning
points, where the WKBJ expansion breaks down. Our present work aims at extending to two-dimensional situations
which present an “island” of instability, i.e. the two-dimensional bump of temperature, the analytical construction of a
global mode governed by a double turning point located at the maximum of the local growth rate . The analytical flows
and critical conditions obtained by this method are then compared with direct numerical simulations of the Navier–Stokes
equations under the Boussinesq approximation.

GLOBAL MODE CONSTRUCTION AND SELECTION

WKBJ expansion
In the inhomogeneous Rayleigh–Bénard–Poiseuille flow, the slow and rapid horizontal variations are separated by the use
of slow coordinates X = εx and Y = εy, where ε is a small parameter. The basic steady state is sought as an expansion
in powers of ε. The WKBJ expansion of the perturbation is expressed as

v =
(
v0 (X,Y, z) + εv1 (X,Y, z) + O

(
ε2

))
exp

(
i

ε
Φ(X,Y ) − iωt

)
+ c.c., (1)

with the complex frequency ω = ω0 + εω1 + O
(
ε2

)
and wavevector k (X,Y ) = ∇Φ(X,Y ). At order O

(
ε0

)
of the

linearised dynamics equations, the perturbation is sought as a solution of the homogeneous local problem — parameterised
by the local Rayleigh number R (X,Y ) with the frequency ω0 and the wavevector k (X,Y ) — modulated by an amplitude
A (X,Y ). As a consequence the dispersion relation, expressed as

ω (∂XΦ, ∂Y Φ,R (X,Y )) = ω0, (2)

is satisfied by Φ(X,Y ). At order O
(
ε1

)
the solvability condition for the perturbation leads to the amplitude equation

satisfied by A (X,Y ):
∂XA∂kx

ω + ∂Y A∂ky
ω + A (−iω1 + Γ (X,Y ;ω0)) = 0, (3)

where Γ (X,Y ;ω0) gathers terms due to the spatial dependences of the basic state, the wavevector and R. The integration
of Φ(X,Y ) and A (X,Y ), which results in the complete first order of the WKBJ expansion, can be done along the —
common — characteristics of equations (2) and (3), whose tangential vector is the group velocity

(
∂kx

ω, ∂ky
ω
)
, where

the values of ω0 and ω1 in these equations must be known and a gauge choice for Φ and A must be given. This can be
achieved by means of a two-dimensional double turning point, where ∂

t.p.
kx

ω = ∂
t.p.
ky

ω = 0 and ∂
t.p.
X ω = ∂

t.p.
Y ω = 0.

Turning point region and selection criterion
Since the WKBJ approximation breaks down at a turning point the perturbation is sought as an expansion in powers of
ε1/2. The homogeneous problem recovered at order O

(
ε0

)
and the condition ∂

t.p.
kx

ω = ∂
t.p.
ky

ω = 0 imposes the solution



v̂0
t.p.

(z), associated with the frequency ω
t.p.
0 and the wavevector

(
kt.p.

x , kt.p.
y

)
, of this eigenproblem expressed at the

turning point. The condition ∂
t.p.
X ω = ∂

t.p.
Y ω = 0 imposes the double turning point to be located at the maximum of

R (x, y). The solvability condition at order O
(
ε1

)
yields the amplitude of the first order of the perturbation. This first

order of the perturbation is then given by:

v
inner
0 (x, y, z, t) = v̂0

t.p.
(z) exp
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−

εα

2
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εβ

2
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)
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(
i
(
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)
− i

(
ω

t.p.
0 + εω1

)
t
)
, (4)

where the coefficients εα, εβ and εδ and the correction of the complex frequency εω1 are deduced from the dispersion
relation and the R (x, y) function expressed at the turning point. Furthermore, the first order of the global mode in the
turning point region (4) provides a gauge choice for Φ and A.

COMPARISON WITH NUMERICAL SIMULATIONS

For functions R (x, y) as in figure 1(a), the leading order of the inner expansion of the most unstable mode (4) and its
critical conditions flowing from the evaluation of ω

t.p.
0 + εω1 are compared with the results of a spectral method direct

numerical simulations. Rolls orientated transversely with respect to the mean flow, predicted analytically (figure 1(b))
and observed numerically (figure 1(c)), and the very good agreement for their critical conditions underline the relevancy
of the analytical selection criterion.
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Figure 1. (a): bump of Rayleigh number R (x, y) with, for increasingly lighter shades of gray, the stable, convectively unstable and
absolutely unstable regions obtained for a mean flow along the x-direction at Reynolds number R = 0.40 and a Prandtl number P = 7.
Comparison between the vertical velocity components of the convection rolls of the analytical approximation (b) and direct numerical
simulation at time t = 125 (c), with the convectively unstable/stable boundary (dashed-dotted lines), the absolutely/convectively
unstable boundary (dashed lines) and the contour where the amplitude of the perturbation reaches five percent of its maximum (solid
lines).

Furthermore, the numerical simulations shed light on the nonlinear behaviour of the instabilities. They distinguish situ-
ations where the linear mode saturates and preserves its maximum close to the downstream convectively unstable/stable
boundary (figure 2(a)) from situations where a front forms at the upstream convectively/absolutely unstable boundary
(figure 2(b)), which raise the question of the two-dimensional dynamics of a front.
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Figure 2. Nonlinear evolution of the amplitude of the instability obtained by numerical simulation for Reynolds numbers R = 0.4 (a)
and R = 0.38 (b), with superimposed local stability properties as in figure 1(a).


