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Summary The problem of the stability of developing entry flow in both two-dimensional channels and circular pipes is investigated.
The basic flow is generated by uniform flow entering a channel/pipe, which then provokes the growth of boundary layers on the walls,
until (far downstream) fully developed (Poiseuille) flow is attained; the length for this development to be O(Reynolds number) x the
channel/pipe width/diameter. This enables the use of high-Reynolds-number theory, leading to boundary-layer-type equations; as such
there is no need to impose heuristic parallel-flow approximations. The resulting flow is shown to be susceptible to significant, three-
dimensional transient (initially algebraic) growth in the streamwise direction, and as such large amplifications to flow disturbances are
shown to occur (followed by ultimate decay far downstream). It is suggested that this initial amplification of disturbances is a possible
mechanism for flow transition, with steady disturbances being the most ‘dangerous’.

INTRODUCTION AND FORMALISM

The stability of Hagen-Poiseuille fbow has intrigued scientists for more than a century since Reynolds experimental
investigations. It is reasonably well accepted that fully developed Hagen-Poiseuille fow is linearly stable and yet, in
practice, most pipe fows are turbulent. In a carefully controlled experimental study of this flow the following sequence
of eventsis usually observed. Below a Reynolds number, Re of ~ 2,000 any disturbance introduced into the fow will
decay and the flow can be said to be stable in practical terms. Abovethisvalueit is possible to maintain laminar flow and
the highest recorded Re for laminar fbw is =~ 100, 000 which was achieved with extraordinary amounts of care.

In this paper we consider the stability of developing flow inside two-dimensional channelsand circular pipes. At theinlet,
the fow is taken to be uniform, and then boundary layers form on the channel/pipe walls, which downstream eventually
merge to form fully developed fow. The lengthscale for fully developed fbow to become established is very long at large
Reynolds numbers - O(Re) x width/diameter of the channel/pipe. Close to the inlet the boundary layers resemble fht-
plate (Blasius) boundary layers, which are susceptible to streamwise algebraic growth of three-dimensional disturbances
([11, [2]). In this paper it is shown how this class of disturbance isimportant in the fow development problem.

Consider the two-dimensional channel case (the pipe case develops in an analogous manner). We take coordinates
L(zRe,y, z), origin at the leading edge of the lower wall, which lies along y = 0, with the fow directed aong the
positive z direction; z isthe crossfbw direction. Here L denotes the semi-width of the channel, and the Reynolds number
Re = % with Uy the incoming (uniform) fow velocity and v the kinematic viscosity of the fuid (assumed to be
incompressible). Throughout it is assumed Re > 1, enabling the use of the boundary-layer equations to be entirely
rational. The flow velocity is then written in the form u = U o (U, Re=1V, Re='W), whilst the pressure developsin the
formp = pU?2 (Py(z) + Re ' Pi(z) + Re 2 Py(=,y,2) +- . .), (p being the density of the fLiid). Taking the leading-order
(in Re) termsin the Navier-Stokes equations leads to

Up+Vy+W. =0 , U +UU, + VU, +WU, = =Py, + Uy, + U..,
Vit UV + VVy + WV, = —Poy + Vi + Vi, Wi+ UW, + VW, + WW, = —Po, + Wy + Wao, (D)

where (%)t denotes dimensiona time. Note the y and z components of the momentum equation involve the third term
in the pressure expansion.
We now decompose the velocity fi eld (U, V, W) into a base flow and a small amplitude (O(4)) perturbation, as follows

(U, V,W, Py) = (Up, Vo,0,0) + 6(U,V, W, Py)et+iBz 1 0(6?), 2

w being the frequency of the disturbance and 3 the crossflow wavenumber.

In order to generate accurate results for the disturbance fi eld, it was found necessary to treat both the base fow and the
disturbance fi eld with great care, employing a double numerical grid which mimicked the analytic behaviour as ¢ — 0.
It is possible to deduce from the analysis that as x — 0, the disturbance fi eld admits streamwise-growing algebraic
behaviour, corresponding to that found in [1], [2], [3] and [4], provided the disturbances are three-dimensional (i.e.
B # 0). Eigenfunctions corresponding to these modes then provided theinitial conditionsfor the disturbancefi eld, which
was then extended downstream using routine parabolic marching techniques (asimilar procedure was adopted for the base
fow).

RESULTS

Results for the streamwise perturbation velocity along the line of symmetry within the channel are shown in 1(a) for four
spanwise wavenumbers (where £ = /x); these results are all for the case of steady disturbances (w = 0) sinceit isfound
that these are generally the most dangerous, i.e. provoke the largest flow response. Of particular note is the value of
that generates the most signifi cant response. This can obviously be measured in avariety of means, but here we defi ne a
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(8) Streamwise perturbation velocity along symmetry line (b) Variation of response function with 3

Figure 1. Channel results (w = 0)
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Figure 2. Variation of response function with 3, pipe case (w = 0)

response function 7 = f0°° |(7 (&,y = 1)|d€. Results for the variation of this quantity, as the crossfow wavenumber is
varied are shown in fi gure 1(b), which indicates amaximum at 5 = 1.38.

There are some interesting similarities and differencesin the case of developing fow inside a circular pipe. Firstly if the
spanwise wavenumber is replaced by an azimuthal wavenumber 3, then this must be restricted to integer values. Second,
detailed analysis reveals that 5 > 2. Again, careful numerical work (including a judicious choice of coordinates) is
necessary for accurate stability results. Since (for the permissible values of azimuthal wavenumber) the axia velocity
component of the disturbancefi eld is zero, the use of the previous defi nition of response function is no longer appropriate,

and so instead we took F = f0°° U, r = \/;)|d§, (where r is the non-dimensional radius, suchthat 0 < r < 1).

Results for this measure (again, for w = 0) are shown in fi gure 2. The largest fbw response is seen clearly to occur at the
smallest permissible value of azimuthal wavenumber,i.e. 5 = 2.

CONCLUSION

Given the signifi cant flow disturbance response that is possible, there is therefore some potential for fow transition to be
provoked through the mechanism described in this paper.
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