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Summary  We present the linear three-dimensional instabilities of the flow between exactly counter-rotating disks over the height-
to-radius aspect ratio range 0.5 < I" < 3. The lowest Reynolds number threshold always corresponds to a non-axisymmetric and
stationary eigenmode and the critical azimuthal wavenumber obeys m¢ = 2.2/T". The axisymmetric instabilities are quite complicated,
and are organized around various codimension-two points.

The von Karman flow engendered by the differential rotation of the upper and lower bounding disks of a cylinder exhibits
a large variety of phenomena, and depends on three parameters, which can be taken to be an angular velocity ratio
s = Qup/Qow, an aspect ratio I' = H/R, and a Reynolds number Re = Q,,,R? /v. This flow is of growing interest to
fluid dynamicists, but its three-dimensional patterns and transitions have as yet been explored for only a few parameter
combinations, e.g. [1, 2, 3,4, 5, 6, 7].

We focus on the case s = —1 in which the two disks rotate in equal and opposite directions. The system is then not
only axisymmetric, but also invariant under simultaneous reflection in z and 8 (or any horizontal axis), leading to the
symmetry group O(2). For low Re, the solution is unique and axisymmetric. For all values of " and Re, there exists an
axisymmetric solution called the base state which is connected smoothly to the unique low-Re solution. We calculate the
Reynolds numbers at which this solution becomes linearly unstable for 0.5 < T' < 3.0.

Newton’s method, combined with a streamfunction-vorticity formulation, is used to calculate the base state. To calculate
growth rates, we numerically integrate the Navier-Stokes equations linearized about the base state using a 3D code [6, 7]
which combines a Fourier decomposition in 6 with a staggered non-uniform grid in (r, z). For an axisymmetric base
state, the stability computation separates into a family of decoupled subproblems each associated with an azimuthal
wavenumber m. The leading eigenvalues are extracted as half the slope of the evolution of the logarithm of the energy
corresponding to each m. The thresholds Re,,, (') are calculated by interpolation and shown in figure 1.

The lowest threshold Rec(I") = min,, Re,, (') is achieved for non-axisymmetric eigenmodes over the range 0.5 <
I' < 3.0 and is shown in figure 3a. The fact that these modes are stationary is a consequence of the O(2) symmetry
of the configuration and of the basic flow. This leads to non-axisymmetric eigenmodes which are both stationary and
invariant under simultaneous reflection in z and in 8; see figure 2. Figure 3b shows that the critical wavenumber increases
approximately linearly with the radius, which is consistent with the idea that this is a generalized Kelvin-Helmholtz
instability of an equatorial azimuthal shear layer occupying a constant proportion of the height.

Although the axisymmetric modes are not critical for these parameters, we present their thresholds in order to provide
a complete framework which can be continued to other values of I" or s. Figure 4a shows two pitchfork bifurcations
existing for I' < 0.78 and disappearing at an isola formation point. Figures 4b,c show two Hopf bifurcations with
different frequencies co-existing for ' < 0.55, where one of them disappears at a Takens-Bogdanov point. The rapid
variation of the axisymmetric Hopf bifurcation threshold seen in figure 1 near I' = 1.6 is due to an intersection of two
complex eigenvalues. All the codimension-two points, both non-axisymmetric and axisymmetric, are shown in the table.

Competing wavenumbers r Re Description
or bifurcations

(4,3) 0.63 365
(3,2) 095 310
2,1 1.64 330

H, /P, 051 2802

H,/H, 0.535 2602

Hy /P, 0.55 2309 Takens-Bogdanov point

P /P, 0.78 700 isola formation point
H, 1.59 1860 | intersection of two complex eigenvalues
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Figure 1. Thresholds Re,,(I') for azimuthal modes m = 0 to 5 as functions of the Figure 2. Vertical velocity con-
aspect ratio I'. The modes m = 1 to 5 are stationary while the m = 0 mode is stationary tours of an m = 3 eigenvector at
for m = 0 (P1) and (P2) and oscillatory for m = 0 (Hy) and (H»). z=T/4,z=0,and z = -T'/4.
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Figure3. (a) Critical Reynolds number Re¢(I") as a function of I" realised for different critical wavenumbers: m =1 (x), m = 2 (%),
m =3 (0), m = 4 (M). (b) Critical wavenumber m¢ (+) as a function of 1/T" with the indicative dashed line m = 2.2/T.
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Figure 4. (a) Axisymmetric thresholds: two stationary bifurcations Py (e) and P2 (o) and two Hopf bifurcations H; (O) and Ha (—).
P1 and P2 disappear at the isolation formation point at I' = 0.78. (b) Enlargement of (a) showing the disappearance of H at the
Takens-Bogdanov point at I" = 0.55. (¢) Frequencies for H; (O0) and Hy (—).



