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Summary We present the linear three-dimensional instabilities of the flow between exactly counter-rotating disks over the height-
to-radius aspect ratio range ��� �
	��
	�� . The lowest Reynolds number threshold always corresponds to a non-axisymmetric and
stationary eigenmode and the critical azimuthal wavenumber obeys ��������� ����� . The axisymmetric instabilities are quite complicated,
and are organized around various codimension-two points.

The von Kármán flow engendered by the differential rotation of the upper and lower bounding disks of a cylinder exhibits
a large variety of phenomena, and depends on three parameters, which can be taken to be an angular velocity ratio������� �"!��$#&%(' , an aspect ratio ) ��*�!,+ , and a Reynolds number +.-/���0#1%2'3+.45!�6 . This flow is of growing interest to
fluid dynamicists, but its three-dimensional patterns and transitions have as yet been explored for only a few parameter
combinations, e.g. [1, 2, 3, 4, 5, 6, 7].
We focus on the case �87:9/; in which the two disks rotate in equal and opposite directions. The system is then not
only axisymmetric, but also invariant under simultaneous reflection in < and = (or any horizontal axis), leading to the
symmetry group >@?BA"C . For low +.- , the solution is unique and axisymmetric. For all values of ) and +D- , there exists an
axisymmetric solution called the base state which is connected smoothly to the unique low- +D- solution. We calculate the
Reynolds numbers at which this solution becomes linearly unstable for EGF�HJIK)LIKMGF E .
Newton’s method, combined with a streamfunction-vorticity formulation, is used to calculate the base state. To calculate
growth rates, we numerically integrate the Navier-Stokes equations linearized about the base state using a 3D code [6, 7]
which combines a Fourier decomposition in = with a staggered non-uniform grid in ?ON,P2<QC . For an axisymmetric base
state, the stability computation separates into a family of decoupled subproblems each associated with an azimuthal
wavenumber R . The leading eigenvalues are extracted as half the slope of the evolution of the logarithm of the energy
corresponding to each R . The thresholds +.-�S ?O)TC are calculated by interpolation and shown in figure 1.
The lowest threshold +.-,U ?O)3C �:V@W1X S +.- S ?B)TC is achieved for non-axisymmetric eigenmodes over the range EGF�HYI
)ZI[MGF E and is shown in figure 3a. The fact that these modes are stationary is a consequence of the >@?BA"C symmetry
of the configuration and of the basic flow. This leads to non-axisymmetric eigenmodes which are both stationary and
invariant under simultaneous reflection in < and in = ; see figure 2. Figure 3b shows that the critical wavenumber increases
approximately linearly with the radius, which is consistent with the idea that this is a generalized Kelvin-Helmholtz
instability of an equatorial azimuthal shear layer occupying a constant proportion of the height.
Although the axisymmetric modes are not critical for these parameters, we present their thresholds in order to provide
a complete framework which can be continued to other values of ) or � . Figure 4a shows two pitchfork bifurcations
existing for )]\^E_F�`�a and disappearing at an isola formation point. Figures 4b,c show two Hopf bifurcations with
different frequencies co-existing for )�\bE_F H"H , where one of them disappears at a Takens-Bogdanov point. The rapid
variation of the axisymmetric Hopf bifurcation threshold seen in figure 1 near ) 7c; F d is due to an intersection of two
complex eigenvalues. All the codimension-two points, both non-axisymmetric and axisymmetric, are shown in the table.

Competing wavenumbers ) +.- Description
or bifurcations

(4,3) 0.63 365
(3,2) 0.95 310
(2,1) 1.64 330*�e�!,f 4 0.51 2802*�e�!�* 4 0.535 2602* 4 !,f 4 0.55 2309 Takens-Bogdanov pointfge�!�f 4 0.78 700 isola formation point*he 1.59 1860 intersection of two complex eigenvalues
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Figure 1. Thresholds ������� ��� for azimuthal modes �
	Z� to 5 as functions of the
aspect ratio � . The modes ��	
� to 5 are stationary while the ��	 � mode is stationary
for ��	 � (P � ) and (P � ) and oscillatory for ��	 � (H � ) and (H � ).

Figure 2. Vertical velocity con-
tours of an ��	Y� eigenvector at
� 	 � ��� , � 	�� , and � 	
� � ��� .
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Figure 3. (a) Critical Reynolds number ��� � � ��� as a function of � realised for different critical wavenumbers: ��	�������� , ��	 ������� ,
��	 � �"!#� , ��	$� �"%#� . (b) Critical wavenumber � � ( & ) as a function of � � � with the indicative dashed line ��	��,� ����� .
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Figure 4. (a) Axisymmetric thresholds: two stationary bifurcations P � ( ' ) and P � ( ( ) and two Hopf bifurcations H � ( ! ) and H � (—).
P � and P � disappear at the isolation formation point at ��	 � � )�* . (b) Enlargement of (a) showing the disappearance of H � at the
Takens-Bogdanov point at �+	 ��� ��� . (c) Frequencies for H � ( ! ) and H � (—).


