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Summary Experimental results [4], showed that solute spreading in saturated heterogeneous porous media does not always obey
Fourier’s law: the second moment of the concentration of a passive tracer dissolved in the saturating fluid may be proportional to
a power of time, different from

�
. A variety of fractional models are commonly used to account for the possibility, for the solute,

to follow preferential paths or to be trapped by obstacles, depending on hypotheses concerning the small scale motion of dissolved
particles. One can expect the internal self organization of the pores to influence the general trends of particle motion, at small and
at large scale. Therefore we model diffusion, starting from hypotheses concerning the random structure of the heterogeneous porous
medium. We consider a medium, which is a collection of tubes, randomly twisted around a general direction, and filled with motionless
fluid. Solute spreading is assumed to obey Fick’s law. Upon averaging over the tubes, we arrive at a modified version of Fourier’s
law for the evolution of the solute concentration. Properties of the impulse response of the thus obtained fractional equation are then
discussed.

THE MEDIUM

Consider a three dimensional medium, made of a wide collection of tubes (indexed by � ) whose direction depends on the
spatial coordinate � , which represents a general trend. As on Figure 1, let �������	��
 be the angle between the direction �
and the sample channel, indexed by � , so that ���
���	��
 is a random variable. Suppose also that the tubes are saturated by
motionless fluid. Solute is initially injected in a subset of the medium, which meets all the tubes (at ����� for instance).
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�
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where � ! is a coefficient, which also may depend on � and � . Suppose that - � ! #&%('������
��
.� /1032/ is a stochastic
process, for instance a Gaussian process with average / , and correlation function 4 )*57698(: � 6 �*; : . Moreover 4 ) is supposed
to be small, while < is large.

FRACTIONAL DIFFUSION EQUATION FOR THE AVERAGE CONCENTRATION

Upon averaging (1) with respect to � we obtain���&= �����,�
�
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With J	K*LNM�O � O ��PJIQR LNM�O � ; P denoting the functional derivative of S with respect to 2/ [1] , the Furutsu-Novikov formula [3] yields= 2/ ) � � �T>�� = 2/$�	2/ � � �9
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 . Disregarding terms of the order of 4 ) = � � gT> in (2) and 4 c = J X Z$qJ@QR L � A P > in (3) yields� � = g����,�
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Solving (4) for
= g�� ���
��hw�	�


> , then setting xy�zCH4 )F{ < and �sh��|�}?b~H4 ) , we obtain that since < is large
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the partial differential equation (6):���I= �������	�
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Here the fractional derivative
� `
� )�

is defined by
� `	� )� S�� V �! K*L�� P� L `
� ) P - L � 6 � P _7� 0 K*L ! P� L `
� ) Pl� � , which is intermediate be-

tween the Riemann-Liouville derivative and the Caputo fractional derivative [2] of order � { C . The total amount of soluteV W = ��� ���
�

	> _ � is conserved by (6), whose impulse response differs slightly from the heat equation’s when x is small.



IMPULSE RESPONSE TO (6)

With �sh9�|� , the impulse response to (6) is ��� ���
x9�	�
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y� `) � � � 5 6 Z A��� . Setting x��� � in (6)

introduces slight but qualitative modifications of the impulse response, displayed on Figure 2. The behavior of � at � �a�
is sensible to x � `
� )� � )� A = �����,�
�

	> in (6), even when x is small. Indeed, for xv� � , the derivative of � with respect to �
is zero at � � � . For x��� � , oppositely, the left and right derivatives are non zero and opposite, so that the nose of �
is sharper. Nevertheless, the effect is mainly visible at short and intermediate times. The value of x also influences the
second moment of � , which is proportional to �G0bC]x�� `	� )*{7- � , so, that non normal diffusive behaviors are visible at short
and at intermediate times. At large times, the impulse response corresponding to x �� � tend to be very similar to the
homogeneous case.

CONCLUSION

In a heterogeneous medium, made of randomly twisted tubes where diffusion obeys Fick’s law, the averaged concentration
of a passive solute was shown to evolve according to a fractional partial differential equation. The fractional equation is
a modified version of Fourier’s law, including a non local term. Comparing with the bell-shaped Gaussian, the impulse
response of the proposed variant has slightly heavier tails, and sharper nose at the point, where solute is initially injected.
Nevertheless, the deviation from Fourier’s law is less visible at large times.
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Figure 1. Part of a tube, inside which diffusion occurs. Displacement by !#" along the tube increases the $ coordinate by !%$ .
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Figure 2. The impulse response of (6), compared with the purely diffusive case &(' ) . Circles, squares and triangles represent the
impulse response of (6) for &*'+)�, � at times )#, � , )�, - and

�
. Full, dashed and dotted lines correspond to &*'+) .


