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Summary The aim of contribution is to consider the problem of nonstationary flow of v Stokesian fluid through

linear elastic porous skeleton. The novelty consists in that the skeleton is deformable and characterized by the so-called

double-porosity matrix. The material of the matrix is hierarchical with two well-separated scales ε and ε2. Macroscopic

equations were derived by using the method of multiscale convergence. Darcy’s law involves both scales and is nonlocal

in time.

INTRODUCTION

Porous media theories play an important role in many branches of engineering, including material science,
the petroleum industry, chemical engineering and soil mechanics as well as in biomechanics. Powerful tool in
the derivation of macroscopic equations describing flows through porous media are offered by homogenization
method, cf. [2,5,7,9] and the references therein.
The aim of this contribution is to examine the dynamic flow of Stokesian fluid through elastic porous skeleton.
The last is characterized by a hierarchical structure with two well-separated scales, cf. Allaire and Briane [1].
For the sake of simplicity these two scale are characterized by ε and ε2, respectively. To find the macroscopic
equations we use the (homogenization) method of three-scale asymptotic convergence, being a specific case of
the method of multiscale convergence. To put it briefly, the macroscopic equations, including the Darcy law,
are obtained by letting ε tend to zero. This law involves both scales and is nonlocal in time

MICROSCOPIC MODEL: PERIODIC DISTRIBUTION OF MICROPORES

Let Ω be an open domain in R3. We consider the open domain Ωε = Ω\Sε
Ω. The closed set Sε

Ω is obtained as
follows: let Y and Z be two fixed reference cells Y = [0, y0

1 ]× [0, y0
2]× [0, y0

3], Z = [0, z0
1 ]× [0, z0

2]× [0, z0
3 ] and set

y0 = (y0
1 , y

0
2 , y

0
3), z0 = (z0

1 , z
0
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3). Denote F ⊂ Y and S ⊂ Z two closed subset with smooth boundaries and
nonempty interiors. We repeat F and S with ”Y -periodicity” and ”Z-periodicity”, respectively. We assume
that for any ε the period Y is exactly covered by a finite number of translated cells of ε2

ε Z. The small parameter
ε will tend to zero. We set Sε

Y = (Y \ F ) ∩ (
⋃

k∈Kε

ε2

ε (S + kz0)), Y ε = Y \ Sε
Y . We assume that Sε

Y ∩ F = ∅
for every ε > 0. Hence Sε

Y is a subset of Y \F , composed of closed sets periodically distributed with period ε2

ε
and of the same size as the period. We set Sε

Ω =
⋃

h∈Hε
ε(Sε

Y + hy0), Fε = Ω ∩ (
⋃

k∈Z3 ε(F + ky0)), cf. Ene
and Saint Jean Paulin [4]. The structure of Ωε presents a double periodicity (ε and ε2). The zones in which
the fractions are concentrated are ε-periodic and of size ε.
Let ΩS

ε = Ω \Ωε be a domain which is occupied by the elastic matrix and Ωε is occupied by the incompressible
viscous fluid. The microscopic equations of the problem to be solved are as follows:

%Süε(x, t) = div [c : e(uε(x, t))] + F S(x, t), (x, t) ∈ ΩS
ε × (0, T ), (1)

%Lv̇ε(x, t) = µε2∆vε(x, t) −∇pε(x, t) + F L(x, t), (x, t) ∈ Ωε × (0, T ), (2)

div vε(x, t) = 0, (x, t) ∈ Ωε × (0, T ), (3)

u̇ε(x, t) = vε(x, t), on ∂ΩS
ε ∩ ∂Ωε × (0, T ). (4)

Boundary and initial conditions complete Eqs. (1)-(4). Here e(u) = 1/2(∇u + ∇uT ).

MULTISCALE CONVERGENCE

To derive the macroscopic model and effective coefficients the so-called multiscale convergence method is used,
see [1-6]. Double porosity requires exactly the three-scale convergence.
We say that the sequence of functions {uε} three-scale converges to u0(x, y, z) iff

lim
ε→0

∫

Ω

uε(x)φ(x, x/ε, x/ε2) dx =
∫

Ω

∫

Y

∫

Z

u0(x, y, z)φ(x, y, z) dxdydz, for each φ ∈ L2(Ω, Y × Z).



MACROSCOPIC MODEL

As a first step in the process of homogenization we obtain the so-called three-pressure system being an extension
of two-pressure system in the case of two-scale convergence method and only one porosity. After two step of
averaging, first over the basic cell Z and then over Y , we obtain the macroscopic relations. The macroscopic
model consists, among others, of the consolidation equation

%S〈ü0〉 + %L〈v̇0〉 = div σ −∇xp0 −
∫

YL

∇p1 dy −
∫

YL

∫

ZL

∇zp
2 dzdy + (1 − f)F S + fF L, in Ω × (0, T ). (5)

It can be shown that p0 = p0(x, t), p1 = p1(x, y, t) and p2 = p2(x, y, z, t). The three-pressure system is as
follows in Ω × YL × ZL × (0, T )

%Lv̇0
rel(x, y, z, t) = µ∆zv

0
rel + F L(x, t) − %Sü0(x, t) −∇xp0(x, t) −∇yp1(x, y, t) −∇zp

2(x, y, z, t), (6)

where vrel(x, y, z, t) = v0(x, y, z, t) − u̇0(x, t) and f means the porosity. Moreover we obtain

divzv
0
rel(x, y, z, t) = 0 in Ω × YL × ZL × (0, T ),

divy

∫
ZL

v0
rel(x, y, z, t) dz = 1

|Z|
∫
ΓZ

u̇1(x, y, z, t) · N ds(z) in Ω × YL × (0, T ),

divx

∫
YL

∫
ZL

v0
rel(x, y, z, t) dzdy = 1

|Y |
∫
ΓY

∫
Z u̇1(x, y, z, t)·n dz ds(y) +

∫
Y

∫
Z u̇2(x, y, z, t) ·N dyds(z) in Ω×(0, T ).

Here N is the unit normal vector to the boundary of ZL (∂ZL = ΓZ) while n is the unit normal vector to
∂YL. The three-pressure system is a combination of usual homogenization and cell problem. By eliminating
the microscopic variables z and y from Eq. (6) the homogenized Darcy law nonlocal in time is obtained. First,
we separate the variables: p2(x, y, z, t) = Π(m)(z, t)[F L(x, t)− %Lü0(x, t)− ∂p0(x,t)

∂xm
− ∂p1

∂ym
(x, y, t)]. Then we get

〈v0
m rel〉ZL =

1
%L

∫ t

0

〈χ(s)
m (z, t − τ)〉ZL [Fs − %Lüs −

∂p0

∂xs
− ∂p1(x, y, t)

∂ys
] dτ, in Ω × YL × (0, T ) (7)

where functions Π(m)(z, t) and χ
(s)
m (z, t) satisfy the so-called local cell problem posed on ZL × (0, T ).

µ∆zzχ
(s)
m = %Lχ̇(s)

m − (e(s)
m − ∂Π(s)

∂zm
), div zχ

(s)(z, t) = 0 in ZL × (0, T ).

Here e(s), s = 1, 2, 3 stands for the vector basis in R3. We observe that in Eq. (7) the local variable y is present.
To obtain fully homogenized Darcy law it is sufficient to eliminate y by integration of both sides of Eq. (7) over
the cell Y .
To pass to the stationary flow we have to pass with time to infinity (t → ∞).

FINAL REMARKS

To derive macroscopic equations in the case of randomly distributed pores in hierarchical porous deformable
medium one can use the method of stochastic multiscale convergence in the mean, cf. [8]. The method of three-
scale convergence used in this contribution can be extended to more complex hierarchical media with mixed
periodic-random distribution of pores. The approach to macroscopic modelling proposed by us [8] applies not
only to geomaterials like fractured porous media, but also to biological tissues (for instance bone tissue).
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