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Summary  The aim of contribution is to consider the problem of nonstationary flow of v Stokesian fluid through
linear elastic porous skeleton. The novelty consists in that the skeleton is deformable and characterized by the so-called
double-porosity matrix. The material of the matrix is hierarchical with two well-separated scales € and £2. Macroscopic
equations were derived by using the method of multiscale convergence. Darcy’s law involves both scales and is nonlocal
in time.

INTRODUCTION

Porous media theories play an important role in many branches of engineering, including material science,
the petroleum industry, chemical engineering and soil mechanics as well as in biomechanics. Powerful tool in
the derivation of macroscopic equations describing flows through porous media are offered by homogenization
method, cf. [2,5,7,9] and the references therein.

The aim of this contribution is to examine the dynamic flow of Stokesian fluid through elastic porous skeleton.
The last is characterized by a hierarchical structure with two well-separated scales, cf. Allaire and Briane [1].
For the sake of simplicity these two scale are characterized by ¢ and 2, respectively. To find the macroscopic
equations we use the (homogenization) method of three-scale asymptotic convergence, being a specific case of
the method of multiscale convergence. To put it briefly, the macroscopic equations, including the Darcy law,
are obtained by letting e tend to zero. This law involves both scales and is nonlocal in time

MICROSCOPIC MODEL: PERIODIC DISTRIBUTION OF MICROPORES

Let Q be an open domain in R®. We consider the open domain . = Q\S§. The closed set S§ is obtained as
follows: let Y and Z be two fixed reference cells Y = [0, 4] x [0,49] x [0,43], Z = [0, 29] x [0, 23] x [0, 2§] and set
Y0 = (19,99,98), 2= (29,29,29). Denote F CY and S C Z two closed subset with smooth boundaries and
nonempty interiors. We repeat F' and S with ”Y-periodicity” and ” Z-periodicity”, respectively. We assume
that for any e the period Y is exactly covered by a finite number of translated cells of éZ . The small parameter
e will tend to zero. We set S5, = (V' \ F') N (Upex. §(S + k2Y), Y =Y\ S5. We assume that S5 N F = ()

for every ¢ > 0. Hence S5 is a subset of Y\ F', composed of closed sets periodically distributed with period §
and of the same size as the period. We set S§ = Upep. (S5 + hy?), Fr = QN (Upegs €(F + ky?)), cf. Ene
and Saint Jean Paulin [4]. The structure of Q. presents a double periodicity (¢ and €2). The zones in which
the fractions are concentrated are e-periodic and of size €.

Let QF = Q\ Q. be a domain which is occupied by the elastic matrix and ). is occupied by the incompressible
viscous fluid. The microscopic equations of the problem to be solved are as follows:

o (x,t) = div[c: e(u®(z,t))] + F5(z,t),  (a,t) € Q2 x (0,T), (1)

0" v (x,1) = pe? Av (,t) — Vi (x,t) + Fh(x,t),  (2,1) € Q. x (0,7), (2)
dives(z,6) =0,  (z,¢) € Q x (0,T), (3)

s (x,t) = v°(z,t), on INS NN x (0,T). (4)

Boundary and initial conditions complete Eqgs. (1)-(4). Here e(u) = 1/2(Vu + VuT).

MULTISCALE CONVERGENCE

To derive the macroscopic model and effective coefficients the so-called multiscale convergence method is used,
see [1-6]. Double porosity requires exactly the three-scale convergence.
We say that the sequence of functions {uf} three-scale converges to u°(z, v, 2) iff

lim [ u®(z)¢(x,x/e,x/e?) dx = / / / u®(z,y, 2)¢(x,y, 2) dedydz, for each ¢ € L*(Q,Y x Z).
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MACROSCOPIC MODEL

As a first step in the process of homogenization we obtain the so-called three-pressure system being an extension
of two-pressure system in the case of two-scale convergence method and only one porosity. After two step of
averaging, first over the basic cell Z and then over Y, we obtain the macroscopic relations. The macroscopic
model consists, among others, of the consolidation equation

0% (u0) + 0" (v%) = dive — V,p° — Vp' dy — / V.p?dzdy + (1 — f)FS + fFL, in Q x (0,7). (5)
YL YL JZp
It can be shown that p° = p°(z,t), p' = p'(x,y,t) and p*> = p*(z,y, 2,t). The three-pressure system is as
follows in Q x Y7, x Zr, x (0,7T)
QLi;gel(xvya Z, t) - IUJAZ'UEel + FL(.I,t) - Qsﬁ’o(xvt) - Vzpo(xvt) - Vypl(xvya t) - vzpz(xvya Z, t)v (6)
where v,.¢(z,y, z,t) = v°(z,y, 2,t) — 4°(x,t) and f means the porosity. Moreover we obtain
div,v? (z,y,2,t) =0 in Qx Y x Z, x (0,7T),
divy [, 0 (2,2, 1) dz = Vil Jr, @',y 2,t) - Nds(z) in QxYg x(0,7),

div, fYL fZL 00, (2, y, 2,t) dzdy = m fryfzu x,y, 2, tyndzds(y) + fny (z,y,2,t) N dyds(z) in Qx(0,T).

Here N is the unit normal vector to the boundary of Z;, (07 = I'z) while n is the unit normal vector to
0Yy,. The three-pressure system is a combination of usual homogenization and cell problem. By eliminating
the microscopic variables z and y from Eq. (6) the homogenized Darcy law nonlocal in time is obtained. First,

we separate the variables: p?(x,y, z,t) = I (2, t)[F*(z,t) — o" 4 (x,t) — Wt ap —(z,y,1)]. Then we get

O

ap°  op'(z,y,t)
0w, 0ys

<v70n rel = / (S) t - T)>ZL [FS - QL’UJS - ] dTa in 2 x YL X (Oa T) (7)

where functions T1(™)(z,t) and X(S) (z,t) satisfy the so-called local cell problem posed on Zp, x (0,T).
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Here e(®)| s = 1,2, 3 stands for the vector basis in R®. We observe that in Eq. (7) the local variable y is present.

To obtain fully homogenized Darcy law it is sufficient to eliminate y by integration of both sides of Eq. (7) over

the cell Y.

To pass to the stationary flow we have to pass with time to infinity (¢ — c0).

pAL xS = oEx (e div.x®(z,6) =0 in Zy x (0,7).

FINAL REMARKS

To derive macroscopic equations in the case of randomly distributed pores in hierarchical porous deformable
medium one can use the method of stochastic multiscale convergence in the mean, cf. [8]. The method of three-
scale convergence used in this contribution can be extended to more complex hierarchical media with mixed
periodic-random distribution of pores. The approach to macroscopic modelling proposed by us [8] applies not
only to geomaterials like fractured porous media, but also to biological tissues (for instance bone tissue).
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